Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary material

Fig.S1 Phonon dispersion of the BC₂P monolayer. The high symmetry points are $\Gamma(0, 0, 0)$, Y(0, 0.5, 0), S/N(0.5, 0.5, 0) and X(0.5, 0, 0).

Fig.S2 Energy oscillations of the MD simulation at room temperature for the $3 \times 3 \times 1$ supercell of BC₂P monolayer.

Fig.S3 Top and side views of optimized adsorption configuration with the number of adsorbed Li atoms as n=22.

Fig.S4 The side views of optimized adsorption configuration for the six different Li concentrations with n=10, 12, 14, 16, 18, 20 (i.e. (a) BC₂PLi_{1.25}, (b) BC₂PLi_{1.5}, (c) BC₂PLi_{1.75}, (d) BC₂PLi₂ (e) BC₂PLi_{2.25}, (f) BC₂PLi_{2.5}).

Fig.S5 (a) Snapshots of the MD simulation for the $Li_{2.5}BC_2P$ supercell with the temperature from 100K to 1400K. (b) Energy oscillations of the equilibrium MD simulation at room temperature 300 K for the $Li_{2.5}BC_2P$ supercell.

Fig.S6 (a), (c) Top and side views of the top sites of C atoms on the supercell of BC_2P monolayer with the ISO as 0.015 e⁻/Bohr³. (b), (d), (e), (g) and (f), (h) Top and side views of two B-C bond sites and the B-C bond site on the BC_2P supercell, which including the CDD and the ISO 0.0003 e⁻/Bohr³.

.