SUPPORTING INFORMATION

Be₃B₁₁⁻ cluster: A dynamically fluxional berylloborospherene[†]

Ying-Jin Wang,*a Lin-Yan Feng, Miao Yan, and Hua-Jin Zhai*b

^aDepartment of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China

^bNanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

*E-mail: yingjinwang@sxu.edu.cn; hj.zhai@sxu.edu.cn

Supplementary Information – Part I

- **Table S1.** Cartesian coordinates for (a) the global-minimum (GM) $(C_{2v}, {}^{1}A_{1})$, (b) the local minimum (LM) $(C_{s}, {}^{1}A')$, and (c) the transition state (TS) $(C_{1}, {}^{1}A)$ structures of Be₃B₁₁⁻ cluster at the PBE0/6-311+G* level.
- Figure S1. Alternative optimized structures of $Be_3B_{11}^-$ cluster at the PBE0/6-311+G* level, the relative energies (in eV) are shown in square bracket with the corrections of zero-point energies (ZPEs), as well as for top four isomers at the single-point CCSD(T)/6-311+G*//PBE0/6-311+G* level.
- Figure S2. The bond distances (in Å) obtained at the PBE0/6-311+G(d) level for (a) the GM $(C_{2v}, {}^{1}A_{1})$ and (b) the LM $(C_{s}, {}^{1}A')$ structures of Be₃B₁₁⁻ cluster.

- **Figure S3.** Calculated Wiberg bond indices (WBIs) in black and natural atomic charges (in |e|) in blue for (a) the GM (C_{2v} , ${}^{1}A_{1}$) and (b) the LM (C_{s} , ${}^{1}A'$) of Be₃B₁₁⁻ cluster from natural bond orbital (NBO) analyses at the PBE0/6-311+G* level.
- Figure S4. The parameters of (a) bond distances, (b) Wiberg bond indices (WBIs) and (c) natural atomic charges in |e| for TS (C_1 , ¹A) structure of Be₃B₁₁⁻ cluster. The WBIs and natural atomics are obtained from the natural bond orbital (NBO) analysis at the PBE0/6-311+G* level.
- Figure S5 Born-Oppenheimer molecular dynamic simulations for Be₃B₁₁⁻ cluster at (a) 300 K, (b) 400 K, and (c) 600 K for 50 ps using the software suite CP2K. Some typical GM structures are picked up during the dynamic simulations. The root-mean-square-deviation (RMSD) and maximum bond length deviation (MAXD) values (on average) are indicated.
- **Figure S6.** The canonical molecular orbitals (CMOs) for the GM (C_{2v} , ${}^{1}A_{1}$) of Be₃B₁₁⁻ cluster. (a) Thirteen σ CMOs for ten Lewis two-center two-electron (2c-2e) B–B σ bonds in B₁₁ skeleton, two three-center two-electron (3c-2e) and one six-center twoelectron (6c-2e) delocalized σ bonds on two B₃ triangles. (b) Four radials π CMOs for three delocalized π bonds on waist and one delocalized π bond on two B₃ triangles. (c) Three tangential π CMOs for three delocalized π bonds on waist.
- Figure S7. The CMOs for the LM (C_s, ¹A') of Be₃B₁₁⁻ cluster. (a) Thirteen σ CMOs for eleven Lewis 2c-2e B–B σ bonds in B₁₁ skeleton, one 3c-2e σ bond on bottom B₃ triangle and one 7c-2e delocalized σ bond on the top B₄ pyramid and bottom B₃ triangle.
 (b) Four radials π CMOs for three delocalized π bonds on waist and one delocalized π bond on top B₄ pyramid and bottom B₃ triangle. (c) Three tangential π CMOs for three delocalized π bonds on waist.
- **Figure S8.** Electron localization functions (ELFs) for (a) the GM (C_{2v} , ${}^{1}A_{1}$), (b) the LM (C_{s} , ${}^{1}A'$) and (c) the TS (C_{1} , ${}^{1}A$) structures.
- **Figure S9.** The CMOs for the TS (C_1 , ¹A) of Be₃B₁₁⁻ cluster. (a) Thirteen σ CMOs for eleven 2c-2e B–B σ bonds in B₁₁ skeleton, one 3c-2e σ bonds on bottom B₃ triangle and

one 7c-2e delocalized σ bond on top B₄ pyramid bottom B₃ triangle. (b) Four radials π CMOs for three delocalized π bonds on waist and one delocalized π bond on top B₄ pyramid and bottom B₃ triangle. (c) Three tangential π CMOs for three delocalized π bonds on waist.

- Figure S10. The adaptive natural density partitioning (AdNDP) bonding pattern for the TS (C_1 , ¹A) structure of Be₃B₁₁⁻ cluster. The occupation numbers (ONs) are indicated.
- Figure S11. The evolution process of the delocalized (a) 6c-2e σ bond and (b) 6c-2e π bond on two B₃ triangles during the interconversion between the GM and LM.

Supplementary Information – Part II

A short movie extracted from the BOMD simulation for Be₃B₁₁⁻ cluster. The simulation was performed at the temperature of 600 K for 50 ps, starting from the equilibrium GM structure with random atom velocities. The movie roughly covers a time span of 12 ps. Figure S1. Alternative optimized structures of $Be_3B_{11}^-$ cluster at the PBE0/6-311+G* level, the relative energies (in eV) are shown in square bracket with the corrections of zero-point energies (ZPEs), as well as for top four isomers at the single-point CCSD(T)/6-311+G*//PBE0/6-311+G* level.

*C*_s,¹A' [3.31]

Figure S2. The bond distances (in Å) obtained at the PBE0/6-311+G(d) level for (a) the GM $(C_{2v}, {}^{1}A_{1})$ and (b) the LM $(C_{s}, {}^{1}A')$ structures of Be₃B₁₁⁻ cluster.

 $LM(C_{s}, {}^{1}A')$

Figure S3. Calculated Wiberg bond indices (WBIs) in black and natural atomic charges (in |e|) in blue for (a) the GM (C_{2v} , ${}^{1}A_{1}$) and (b) the LM (C_{s} , ${}^{1}A'$) of Be₃B₁₁⁻ cluster from natural bond orbital (NBO) analyses at the PBE0/6-311+G* level.

 $LM(C_{s}, {}^{1}A')$

Figure S4. The parameters of (a) bond distances, (b) Wiberg bond indices (WBIs) and (c) natural atomic charges in |e| for TS (C_1 , ¹A) structure of Be₃B₁₁⁻ cluster. The WBIs and natural atomics are obtained from the natural bond orbital (NBO) analysis at the PBE0/6-311+G* level.

 $LM(C_{s}, {}^{1}A')$

Figure S5 Born-Oppenheimer molecular dynamic simulations for Be₃B₁₁⁻ cluster at (a) 300 K, (b) 400 K, and (c) 600 K for 50 ps using the software suite CP2K. Some typical GM structures are picked up during the dynamic simulations. The root-mean-square-deviation (RMSD) and maximum bond length deviation (MAXD) values (on average) are indicated.

Figure S6. The canonical molecular orbitals (CMOs) for the GM (C_{2v} , ${}^{1}A_{1}$) of Be₃B₁₁⁻ cluster. (a) Thirteen σ CMOs for ten Lewis two-center two-electron (2c-2e) B–B σ bonds in B₁₁ skeleton, two three-center two-electron (3c-2e) and one six-center twoelectron (6c-2e) delocalized σ bonds on two B₃ triangles. (b) Four radials π CMOs for three delocalized π bonds on waist and one delocalized π bond on two B₃ triangles. (c) Three tangential π CMOs for three delocalized π bonds on waist.

The CMOs for the LM (C_s , ¹A') of Be₃B₁₁⁻ cluster. (a) Thirteen σ CMOs for eleven Figure S7. Lewis 2c-2e B–B σ bonds in B_{11} skeleton, one 3c-2e σ bond on bottom B_3 triangle and one 7c-2e delocalized σ bond on the top B_4 pyramid and bottom B_3 triangle. (b) Four radials π CMOs for three delocalized π bonds on waist and one delocalized π bond on top B₄ pyramid and bottom B₃ triangle. (c) Three tangential π CMOs for three delocalized π bonds on waist.

HOMO-5

HOMO-10

HOMO-8

Figure S8. Electron localization functions (ELFs) for (a) the GM (C_{2v} , ${}^{1}A_{1}$), (b) the LM (C_{s} , ${}^{1}A'$) and (c) the TS (C_{1} , ${}^{1}A$) structures.

Figure S9. The CMOs for the TS (C_1 , ¹A) of Be₃B₁₁⁻ cluster. (a) Thirteen σ CMOs for eleven 2c-2e B–B σ bonds in B_{11} skeleton, one 3c-2e σ bonds on bottom B_3 triangle and one 7c-2e delocalized σ bond on top B_4 pyramid bottom B_3 triangle. (b) Four radials π CMOs for three delocalized π bonds on waist and one delocalized π bond on top B_4 pyramid and bottom B_3 triangle. (c) Three tangential π CMOs for three delocalized π bonds on waist.

HOMO-5

HOMO-10

HOMO-8

Figure S10. The adaptive natural density partitioning (AdNDP) bonding pattern for the TS (C_1 , ¹A) structure of Be₃B₁₁⁻ cluster. The occupation numbers (ONs) are indicated.

Figure S11. The evolution process of the delocalized (a) 6c-2e σ bond and (b) 6c-2e π bond on two B₃ triangles during the interconversion between the GM and LM.

Table S1. Cartesian coordinates for (a) the global-minimum (GM) $(C_{2v}, {}^{1}A_{1})$, (b) the local minimum (LM) $(C_{s}, {}^{1}A')$, and (c) the transition state (TS) $(C_{1}, {}^{1}A)$ structures of Be₃B₁₁⁻ cluster at the PBE0/6-311+G* level.

(a) GM (C_{2v} , ${}^{1}A_{1}$)

В	0.78814700	1.72234800	-0.28463500
В	1.89194400	0.76206000	-0.92078100
В	1.89194400	-0.76206000	-0.92078100
В	0.78814700	-1.72234800	-0.28463500
В	-0.78814700	-1.72234800	-0.28463500
В	-1.89194400	-0.76206000	-0.92078100
В	-1.89194400	0.76206000	-0.92078100
В	-0.78814700	1.72234800	-0.28463500
В	0.00000000	1.32009900	1.25416200
В	0.00000000	0.00000000	2.10125800
В	0.00000000	-1.32009900	1.25416200
Be	-1.33685700	0.00000000	0.74955200
Be	1.33685700	0.00000000	0.74955200
Be	0.00000000	0.00000000	-1.23399800

(b) LM (C_s, ¹A')

В	1.95382700	0.32161400	0.00000000
В	1.85257700	-1.22519100	0.00000000
В	0.67593300	-2.20138200	0.00000000
В	-0.81980800	-1.75839700	0.00000000
В	-1.54609900	-0.50410300	-0.84801500

В	-0.95895900	0.63557200	-1.80931200
В	0.24898400	1.49356700	-1.37890900
В	1.14715300	1.69340700	0.00000000
В	0.24898400	1.49356700	1.37890900
В	-0.95895900	0.63557200	1.80931200
В	-1.54609900	-0.50410300	0.84801500
Be	-1.10312800	1.11408900	0.00000000
Be	0.36560500	-0.60712100	1.17993400
Be	0.36560500	-0.60712100	-1.17993400

(c) TS (C_1 , ¹A)

В	-0.04852900	1.95010800	-0.26736200
В	1.45504600	1.62124900	-0.48223900
В	2.21657700	0.29683200	-0.48325400
В	1.58716500	-1.09746500	-0.15207800
В	0.15737700	-1.78208300	-0.52902700
В	-1.09140900	-1.26589800	-1.40623200
В	-1.76025400	0.10104900	-1.20491400
В	-1.50323800	1.33664600	-0.15548300
В	-1.06154000	0.84696900	1.38679200
В	-0.39740000	-0.39050900	2.04179100
В	0.42759900	-1.37271000	1.10522200
Be	-1.24351000	-0.86014500	0.42079500
Be	0.93671500	0.48264200	1.00399400
Be	0.33005300	0.07226600	-1.24130900