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Uniform surface limit by Kiselev [A. V. Kiselev. Intermolecular interactions in adsorption and 
chromatography. Moscow, High School, 1986]

The discussion of the second derivative of the potential energy stems from the theory of ideal 
adsorbed state. It is important to question applicability of the limit, but the universal law for gas 
adsorption does exist as the ideal limit is observed experimentally, when pressure approaches zero. 
Articulating adsorption, this corresponds to the Henry’s Law according to the choice of a 
thermodynamic standard state.

Following this, thermodynamics of adsorption concerns accounting the relation of Henry's constant, 
K1, as a macroscopic characteristic, with potential energy on intermolecular interaction, which 
depends on the structure of both, the adsorbate molecule and of the adsorbent. To manage the 
task, we need to adopt molecular-statistical theory of adsorption to express K1 in dependence on 
temperature.

The general molecular-statistical expression for the chemical potential of the adsorbate in the gas 
phase, , and when adsorbed, ,are:𝜇𝑔 𝜇

𝜇𝑔 =  ‒ 𝑘𝑇 𝑙𝑛⁡(𝑄𝑔/𝑁𝑔)

𝜇 =  ‒ 𝑘𝑇 𝑙𝑛⁡(𝑄/𝑁)

where  and  are the canonical sums over states, while  and  are the numbers of molecules.𝑄𝑔 𝑄 𝑁𝑔 𝑁

When equilibrium, , we receive𝜇𝑔 = 𝜇

 or 

𝑁 ‒ 𝑁𝑔

𝑁𝑔
=

𝑄 ‒ 𝑄𝑔

𝑄𝑔

𝐴(𝑁 ‒ 𝑁𝑔)/𝐴

𝑉(𝑁𝑔/𝑉)
=

𝑄 ‒ 𝑄𝑔

𝑄𝑔

where V and A are the volume of the gas phase and area of adsorption, respectively. Here, 
 and  represent Gibbs’ adsorption and adsorbate concentration in the gas (𝑁 ‒ 𝑁𝑔)/𝐴 = Γ 𝑁𝑔/𝑉 = 𝑐

phase, respectively.

Next, to obtain a molecular-statistical expression for Henry's constant, let's pay attention to the fact 
that that, when Г → 0 and e c → 0, one can neglect the interaction of adsorbate molecules with each 
other as in the gas phase, and in the adsorbed state. To distinguish this simple case, we adopt 
subscript 1 
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lim
Γ→0,𝑐→0 (Γ

𝑐) = 𝐾1 =
𝑉
𝐴(𝑄1 ‒ 𝑄𝑔

1

𝑄𝑔
1

) =
𝑉
𝐴(𝑄1

𝑄𝑔
1

‒ 1)
Here,  and  are the sums over states for non-interacting molecules.𝑄1 𝑄𝑔

1

In the case of relatively weak physical adsorption on an inert non-porous non-specific adsorbent 
with a homogeneous flat surface, it can be assumed that intramolecular degrees of freedom of 
quasi-rigid molecules (which do not possess an internal rotation and retain their configuration 

during adsorption) do not change. Accordingly, the corresponding terms in  and  would be 𝑄1 𝑄𝑔
1

removed.

In the classical approximation, sums over states are expressed in terms of the corresponding 
configuration integrals

             (1)
𝑄𝑐𝑙𝑎𝑠

1 =
1

𝜎ℎ
 ∫…∫exp [ ‒ 𝐻(𝑘𝑇)] 𝑑𝑝1…𝑑𝑝𝑠𝑑𝑞1….𝑑𝑞𝑠

Here, h is the Planck constant,  – number of symmetries, s – number of degrees of freedom, H is 𝜎
the Hamiltonian to account kinetic and potential energies, p and q are generalized impulses and 
coordinates. 

In the case of a quasi-rigid molecules, when Г → 0 and e c → 0, Hamiltonian accounts translation, 
vibration terms and potential energy of the interaction of molecule with the surface: 

.𝐻 = 𝐸𝑡𝑟 +  𝐸𝑟𝑜𝑡 + 𝑈

In the case of a quasi-rigid molecule like pyridazine,  does not only depend on the position of the Φ
centre of mass, but also on the Euler orientation angles.

Let us express sums for the kinetic terms in Eq. (1), according to the translation energy expressed via 
the molecular mass, M, and impulses for the centre of mass:

𝐸𝑡𝑟 = 𝑝2
𝑥/2𝑀 + 𝑝2

𝑦/2𝑀 + 𝑝2
𝑧/2𝑀

Accounting Poisson integral equality

+ ∞

∫
‒ ∞

𝑒 ‒ 𝑎𝑥2
 𝑑𝑥 = (𝜋/𝑎)0.5

We may receive for px:

+ ∞

∫
‒ ∞

𝐸𝑥𝑝[ ‒ 𝑝2
𝑥/2𝑀𝑘𝑇] 𝑑𝑝𝑥 = (2𝜋𝑀𝑘𝑇)0.5

And consequently:

𝑄1,𝑡𝑟 =  
1

ℎ3

+ ∞

∫
‒ ∞

𝐸𝑥𝑝[ ‒ 𝐸𝑡𝑟/𝑘𝑇] 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 =
1

ℎ3
(2𝜋𝑀𝑘𝑇)3/2

Let us express sums for the rotation terms in Eq. (1),



Fort voluminous molecules  depend on the rotation momenta in the Euler space . At 𝐸𝑟𝑜𝑡 {𝑝𝜃,𝑝𝜓,𝑝𝜙}

the classic limit

𝑄1,𝑟𝑜𝑡 =  
1

ℎ3

+ ∞

∫
‒ ∞

𝐸𝑥𝑝[ ‒ 𝐸𝑟𝑜𝑡/𝑘𝑇] 𝑑𝑝𝜃𝑑𝑝𝜓𝑑𝑝𝜙

We may express rotation energy of a quasi-rigid molecule via principle components of inertia tensor

𝐸𝑟𝑜𝑡 =
1
2

(𝐼𝐴𝜔2
𝑋 + 𝐼𝐵𝜔2

𝑌 + 𝐼𝐶𝜔2
𝑍)

where  are the components of angular velocity of the coordinate system  specific to {𝜔𝑋,𝜔𝑌,𝜔𝑍} {𝑋,𝑌,𝑍}
the molecular frame and rotating in respect to the  system characteristic to the adsorbent. To {𝑥,𝑦,𝑧}
conduct integrations, we need to express angular velocities using Euler variables:

{ 𝜔𝑋 = 𝑆𝑖𝑛𝜓 𝑆𝑖𝑛𝜃
𝑑𝜑
𝑑𝑡

+ 𝐶𝑜𝑠𝜓
𝑑𝜃
𝑑𝑡

𝜔𝑌 = 𝐶𝑜𝑠𝜓 𝐶𝑜𝑠𝜃
𝑑𝜑
𝑑𝑡

+ 𝑆𝑖𝑛𝜓
𝑑𝜃
𝑑𝑡

𝜔𝑍 = 𝐶𝑜𝑠𝜃
𝑑𝜑
𝑑𝑡

+
𝑑𝜑
𝑑𝑡

                     
�

Accordingly,

𝐸𝑟𝑜𝑡 =
1

2𝐼𝐴
[𝑝𝜃𝐶𝑜𝑠𝜓 ‒ (𝑝𝜑 ‒ 𝑝𝜓𝐶𝑜𝑠𝜃)

𝑆𝑖𝑛𝜓
𝑆𝑖𝑛𝜃]2 +

1
2𝐼𝐵

[𝑝𝜃𝑆𝑖𝑛𝜓 ‒ (𝑝𝜑 ‒ 𝑝𝜓𝐶𝑜𝑠𝜃)
𝐶𝑜𝑠𝜓
𝑆𝑖𝑛𝜃 ]2 +

1
2𝐼𝐶

[𝑝𝜑]2

Let us adopt the inertia components’ multipliers as new variable:

{ 𝑢 = 𝑝𝜃𝐶𝑜𝑠𝜓 ‒ (𝑝𝜑 ‒ 𝑝𝜓𝐶𝑜𝑠𝜃)
𝑆𝑖𝑛𝜓
𝑆𝑖𝑛𝜃

𝑣 = 𝑝𝜃𝑆𝑖𝑛𝜓 ‒ (𝑝𝜑 ‒ 𝑝𝜓𝐶𝑜𝑠𝜃)
𝐶𝑜𝑠𝜓
𝑆𝑖𝑛𝜃

𝜔 = 𝑝𝜑                                                     
�

𝐸𝑟𝑜𝑡 =
1

2𝐼𝐴
𝑢2 +

1
2𝐼𝐵

𝑣2 +
1

2𝐼𝐶
𝜔2

Hence, 

𝑄1,𝑟𝑜𝑡 =  
1

ℎ3
 ∫𝐸𝑥𝑝[ ‒ ( 𝑢2

2𝐼𝐴𝑘𝑇
+

𝑣2

2𝐼𝐵𝑘𝑇
+

𝜔2

2𝐼𝐶𝑘𝑇)]𝑑𝑢 𝑑𝑣 𝑑𝜔 𝑆𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓 𝑑𝜙

Adopting the same form of Poisson integral:

𝑄1,𝑟𝑜𝑡 =  
1

ℎ3
 (2𝜋𝐼𝐴𝑘𝑇)1/2(2𝜋𝐼𝐵𝑘𝑇)1/2(2𝜋𝐼𝐶𝑘𝑇)1/2∫𝑆𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓 𝑑𝜙

Having the integrals, we may return to Eq. (1):

𝑄𝑐𝑙𝑎𝑠
1 =

1

𝜎ℎ6
(2𝜋𝑀𝑘𝑇)3/2(2𝜋𝐼𝐴𝑘𝑇)1/2(2𝜋𝐼𝐵𝑘𝑇)1/2(2𝜋𝐼𝐶𝑘𝑇)1/2∫𝑈(𝜃,𝜓,𝜙,𝑥,𝑦,𝑧)

𝑘𝑇
𝑆𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓 𝑑𝜙𝑑𝑥𝑑𝑦𝑑𝑧



Here, the potential energy of interaction depends on the stationary {x,y,z} coordinate system specific 
to the adsorbent and on the  rotation angles of the orientations of the main axes of the {𝜃,𝜓,𝜙}
molecule at the surface.

Using this, we may express Henry’s constant

𝐾1 =
𝑉
𝐴(𝑄1 ‒ 𝑄𝑔

1

𝑄𝑔
1

) =
𝑉∫(𝐸𝑥𝑝[ ‒

𝑈
𝑘𝑇] ‒ 1)𝑆𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓 𝑑𝜙𝑑𝑥𝑑𝑦𝑑𝑧

𝐴∫𝑆𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓 𝑑𝜙𝑑𝑥𝑑𝑦𝑑𝑧

                                   (2)
𝐾1 =

1

8𝜋2𝐴
∫(𝐸𝑥𝑝[ ‒

𝑈
𝑘𝑇] ‒ 1)𝑆𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓 𝑑𝜙𝑑𝑥𝑑𝑦𝑑𝑧

Let us now consider the case of a heterocycle at carbonaceous surface.

Our results of quantum dynamics and DFT studies suggest that such molecule tend to orient parallel 
to the surface. Theory predicts weak energy modulation (c.a. 5 kJ/mol) when the molecule would 
slide parallel to the surface while experiencing angular reorientations. This allows considering the 
model developed for a linear molecule, with its long axis oriented perpendicular to the surface. In 
the case of a heterocycle, the normal to the plane at the centre of the cycle would play the role 
analogous to that of the long axis of a linear molecule.

Due to the relatively high density of carbon atoms (at the basal face of graphite and graphene), and 
their small size, a mathematically homogeneous surface is a good approximation for adsorption on 
such materials. Consistently, with the results of our dynamics simulation, we may relax the 
dependence of the potential energy onto x, y, , and . Also, when the normal to the heterocycle 𝜙 𝜓

plane co-aligns with the z to the surface

𝐾1 =
1
2∫(𝐸𝑥𝑝[ ‒

𝑈
𝑘𝑇] ‒ 1)𝑑𝑧

Expanding , potential energy to the second term

𝑈 =  𝑈0 +  
1
2

𝑈''
𝑧 (𝑧 ‒ 𝑧0)2

where  and  are the value and the second derivative (corresponds to the curvature) in the 𝑈0 𝑈''
𝑧

minimum z = z0, respectively.

𝐾1 = (𝜋𝑘𝑇

𝑈''
𝑧

)1/2𝐸𝑥𝑝[ ‒
𝑈0

𝑘𝑇]
The expressed here analytical derivations should enable a reader to elaborate own models to 
account possible incomplete orientation averaging when using Eq. (2).



Fig. 1S. Structurally mapped Mulliken and restrained electrostatic potential (RESP) atomic 
charges [DOI: 10.1039/C4CP04638B] for pyridazine, pyrimidine and pyrazine computed using 
GWP/PB0 theory with MOLPOT pseudopotential basis.

Fig. 2S. Changes of Mulliken and RESP atomic charges for pyridazine, pyrimidine and pyrazine 
on simulation time, and corresponding covariance matrices.



Fig. 3S. Energy in dependence on in-plane displacement of diazine six-membered 
heterocyclics and geometry of minimal energy. Upper raw: results for the arrangements, 
where a pair of CH bond of the heterocycles are parallel to the reference structural vectors 
(red), as shown. Lower raw: results for the arrangements, where each heterocycle was 
rotated in the XY plane about its centre, that their CH bonds (as indicated) would be under 
30o in respect to the reference structural vectors (red), as shown. The data is computed using 
GWP/PB0 theory with MOLPOT pseudopotential basis.

Fig. 4S. Electronic perturbations induced by diazine six-membered heterocyclics and 
energetic benefits of most the optimal associations under vertical orientations. The data is 
computed using GWP/PB0 theory, MOLPOT pseudopotential basis.



Fig. 5S. UV-VIS spectra for pyridazine, pyrimidine and pyrazine, as indicated, computed using 
TDDFPT: GWP/PB0, MOLPOT pseudopotential basis.

Fig. 6S. Computed electronic states providing electronic transitions as numbered computed 
for pyridazine (top), pyrimidine (middle) and pyrazine (bottom). In each panel, top and 
bottom numbers indicate Molecular Orbitals (MO) or their combination which contribute into 
the computed optical transitions. MO15 and MO16 are the HOMO and LUMO of the 
heterocycles. 



          

Fig. 7S. Projected density of states for G55 graphene systems, heterocycles alone (P: 
pyridazine, Pm: pyrimidine; Pz: pyrazine), and for the combinations of G55 with the 
heterocycles. Green lines indicate Fermi level, which are -3.6522 eV (G55), -3.57048 eV 
(G55+P), -3.58023 eV (G55+Pm), -3.58398 (G55+Pz), -3.38721 eV (P), -3.43132 eV (Pm), -
3.16332 eV (Pz). The data is computed using GWP/PB0 with MOLPOT pseudopotential basis.

Fig. 8S. Projected density of states for coronenes COR44 and COR55, as well as, for G55 
system. Green lines indicate Fermi level, which are -3.6522 eV (G55), -3.94042 eV (COR44), -
4.48712eV (COR55). The data is computed using GWP/PB0 theory with MOLPOT 
pseudopotential basis.



Fig. 9S. TDDFPT results for UV-VIS transitions computed for coronene C44, pyridazine at C44, 
pyrimidine at C44, and pyrazine at C44, as indicated. The data is computed using GWP/PB0 
with MOLPOT pseudopotential basis.

Fig. 10S. Electronic states for coronene C44 to provide optical electronic transitions as 
numbered. The data is computed using TDDFPT: GWP/PB0, MOLPOT pseudopotential basis. 



Fig. 11S. Electronic states for pyridazine at C44 to provide optical electronic transitions, as 
numbered. We use blue-red and grey-yellow colors to contrast contributions of the 
heterocycles and graphene in the demonstrated mixed states. The data is computed using 
TDDFPT: GWP/PB0, MOLPOT pseudopotential basis.

Fig. 12S. Electronic states for pyrimidine at C44 to provide optical electronic transitions, as 
numbered. The data is computed using TDDFPT: GWP/PB0, MOLPOT pseudopotential basis.

Fig. 13S. Electronic states for pyrazine at C44 to provide optical electronic transitions, as 
numbered. The data is computed using TDDFPT: GWP/PB0, MOLPOT pseudopotential basis.



               
Fig. 14S. Left: canonical orbitals of pyridazine using GWP/PB0 theory with MOLPOT 
pseudopotential basis and GAWP/B88+Hartree-Fock exchange-correlation energy and long-
range corrections theory with b3lyp basis, as specified. Right: transition frequencies for 
pyridazine using the two levels of theory. Since for the latter level of theory CP2K package 
does not allow fitting the wavefunctions under the TDDFPT protocol, the dashed lines in the 
panel of optical dispersion do not account oscillation strengths but serve as eye-guides 
indicating frequencies of computed resonances.

Fig. 15S. Left: canonical orbitals of pyridazine at graphene using GWP/PB0 theory with 
MOLPOT pseudopotential basis and GAWP/B88+Hartree-Fock exchange-correlation energy 
and long-range corrections theory with b3lyp basis, as indicated. Right: transition frequencies 
for pyridazine using the two levels of theory. Since for the latter level of theory CP2K package 
does not allow fitting the wavefunctions under the TDDFPT protocol, the dashed lines in the 
panel of optical dispersion do not account oscillation strengths but serve as eye-guides 
indicating frequencies of computed resonances.

      
Fig. 16S. Upper set: projected densities of states computed for pyridazine. Lower set: 
projected densities of states computed for pyridazine at graphene. The data are computed 
using GWP/PB0 theory with MOLPOT pseudopotential basis and GAWP/B88+Hartree-Fock 
exchange-correlation energy and long-range corrections theory with b3lyp basis, as specified. 
For clarity of the comparisons, we subtract Fermi energies in both cases, as indicated by green 
lines.



Fig. 17S. Upper set: departure states of the optical transitions (as indicated by numbers) for 
pyridazine at graphene according to canonical orbital presentation. Identifications under the 
images indicate weights and numbers of the canonical orbitals involved in the departure 
states. Lower set: natural transition orbital presentation. The data are computed using 
GWP/PB0 theory with MOLPOT pseudopotential basis. 

 Fig. 18S. Top: Computed optical transitions for pyridazine in vacuum, single and paired 
pyridazine at graphene using TDDFPT protocol and GWP/PB0 theory with MOLPOT 
pseudopotential basis. Bottom: canonical orbitals of pyridazine at graphene to dominate the 
eight red-edge optical transitions, as indicated.


