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Computational methods for properties

The effective masses of the holes and electrons at VBM and CBM, and the reduced 

effective masses were calculated by Eqs. S1 and 21
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where ε(k) is the band energy of VBM or CBM, and k is the inverse lattice vector. Wannier 

exciton model was adopted to calculated the exciton binding energy2
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where  is the reduced effective mass, and  is static dielectric constant at zero frequency *mr 

approximation and it can be calculated by following equation3 
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where ω is the optical frequency and q is the electron momentum operator.

The linear optical properties4 of semiconductors can be calculated using the frequency-

dependent complex dielectric function ε(ω)

ε(ω)=ε1(ω)+iε2(ω)                                     S(5)

where ω is the optical frequency, ε1 and ε2 are the real and imaginary parts of the dielectric 

function, respectively. In the one-electron graph, the imaginary part of the dielectric function 

ε2(ω) can be obtained from the following equation:
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where  is the integral optical transition from the valence state (v) to the conduction  vc |qe|

state (c), e denotes the polarization direction of the photon and q is the electron momentum 

operator. The integral on k is the sum of special k points with weighting factor wk。The real 

part of the dielectric function ε1(ω) can be gained from the Kramers-Kronig relation4
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where P is the principle value and η is the complex shift parameter. The absorption 
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coefficients can be computed by the following equation5：

                            S(8)2 2
1 2 1α(ω) 2ω ε (ω) ε (ω) ε (ω)  

Open-circuit voltage VOC, short-circuit current JSC, and theoretical power conversion 

efficiency PCE (η) were calculated by Eqs. S9-12. The maximum short-circuit current JSC is 

calculated on the assumption that all incident photons with energy greater than the superlattice 

band gap are absorbed,6
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where e, E, and S(E) are the electronic charge, the energy of an incident photon, and the 

incident spectral power per unit area, respectively. The open circuit voltage VOC can be 

estimated by 

                                        S(10)( ) /OC g lossV E E e 

in which Eloss is the loss-in-potential and 0.5 eV is adopted similar to the previous report.7 The 

maximum theoretical PCE (η) can be obtained by J, VOC, fill factor (FF), and the total 

incident power density (Psun).8 
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According to the solar spectrum data meter provided by the National Renewable Energy 

Laboratory9, the Psun is taken as 100 mW/cm2. The fill factor FF is taken as the reported 

experimental value of 0.731.9



S4

Table S1. Calculated band gaps (eV) of MAPbI3 and FAPbI3 using PBE, PBE+SOC and 

HSE06+SOC compared with experimental values (in brackets).

PBE PBE+SOC HSE06+SOC

MAPbI3 1.687 (1.61)11 0.666 1.575

FAPbI3 1.418 (1.43)12 0.342 1.320

Table S2. Calculated lattice parameters and average monolayer thickness in perovskites and 

superlattice.

perovskites a b c (Å) α β γ (degree) (Å)3MAPbId (Å)3FAPbId

MAPbI3
6.340, 6.330, 6.388

(6.311, 6.311, 6.316)13 90.0, 90.8, 89.9 6.340

FAPbI3
6.489, 6.311, 6.396

(6.4213, 6.3615) 90.0, 90.0, 90.0 6.489

(FAPbI3)2/(MAPbI3)2 25.596, 6.319, 6.388 89.9, 90.1, 90.1 6.447 6.352

Fig. S1. Chemical potential region for the thermal equilibrium growth of (a) MAPbI3 and (b) 

FAPbI3 crystal.
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Fig. S2. The bulk models of 2×2×2 supercell used to calculate electrostatic potentials for 

MAPbI3 and FAPbI3.

Fig. S3. Local structures of FAPbI3/MAPbI3 superlattice with (a) defect free, (b) VPb
2-, (c) 

FAi
+, (d) FAI

2+, (e) PbI
3+, (f) PbMA

+.
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Fig. S4. TDOS and PDOS of superlattice with (a) defect free, (b) VPb
2-, (c) FAi

+, (d) FAI
2+, (e) 

PbI
3+, (f) PbMA

+. The Fermi level is set to zero (the gray dotted line).
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Fig. S5. Band decomposed charge densities distributions of VBM (with an isosurface value of 

0.0001 eÅ-3) and CBM (with an isosurface value of 0.0002 eÅ-3) for the superlattices with and 

without defects. (a) perfect, (b) VPb
2-, (c) FAi

+, (d) FAI
2+, (e) PbI

3+, (f) PbMA
+.
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