Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Information

Intrinsic Defects at Interface of FAPbI₃/MAPbI₃ Superlattice: Insight from First-Principles Calculation

Liping Cheng^{a,b}, Baoen Xu^c, Yanli Zeng^{a*}, Lingpeng Meng^{a*}

 ^aHebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
 ^bCollege of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, PR China

^cTechnology Innovation Center of Hebei Province for Heterocyclic Compound, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, PR China

Computational methods for properties

The effective masses of the holes and electrons at VBM and CBM, and the reduced effective masses were calculated by Eqs. S1 and 2¹

$$m^* = h^2 \left(\frac{\partial^2 \varepsilon(k)}{\partial k^2}\right)^{-1}$$
 S(1)

$$m_r^* = \frac{m_e^* m_h^*}{m_e^* + m_h^*}$$
S(2)

where $\varepsilon(k)$ is the band energy of VBM or CBM, and k is the inverse lattice vector. Wannier exciton model was adopted to calculated the exciton binding energy²

$$E_{eb} = \frac{m_r^* e^4}{2h^2 \varepsilon_\infty^2} = 13.6 \frac{m_r^*}{\varepsilon_\infty^2}$$
 S(3)

where m_r^* is the reduced effective mass, and ε_{∞} is static dielectric constant at zero frequency approximation and it can be calculated by following equation³

$$\varepsilon_{\infty}(\mathbf{q},\omega) \approx \lim_{q \to 0} \varepsilon_{0,0}(\mathbf{q},\omega)$$
 S(4)

where ω is the optical frequency and q is the electron momentum operator.

The linear optical properties⁴ of semiconductors can be calculated using the frequencydependent complex dielectric function $\varepsilon(\omega)$

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$$
 S(5)

where ω is the optical frequency, ε_1 and ε_2 are the real and imaginary parts of the dielectric function, respectively. In the one-electron graph, the imaginary part of the dielectric function $\varepsilon_2(\omega)$ can be obtained from the following equation:

$$\varepsilon_{2}(\omega) = \frac{4\pi^{2}e^{2}}{\Omega} \lim_{q \to 0} \frac{1}{q^{2}} \sum_{c,v,k} 2w_{k} \delta(E_{c} - E_{v} - \omega) |\langle c | \mathbf{e} \cdot \mathbf{q} | v \rangle|^{2} \qquad \mathbf{S}(6)$$

where $\langle c | e \cdot q | v \rangle$ is the integral optical transition from the valence state (v) to the conduction state (c), e denotes the polarization direction of the photon and q is the electron momentum operator. The integral on k is the sum of special k points with weighting factor $w_{k\circ}$ The real part of the dielectric function $\varepsilon_1(\omega)$ can be gained from the Kramers-Kronig relation⁴

$$\varepsilon_1(\omega) = 1 + \frac{2}{\pi} P \int_0^{\infty} \frac{\varepsilon_2(\omega')\omega'}{\omega'^2 - \omega^2 + i\eta} d\omega'$$
 S(7)

where P is the principle value and η is the complex shift parameter. The absorption

coefficients can be computed by the following equation⁵:

$$\alpha(\omega) = \sqrt{2}\omega \sqrt{\sqrt{\epsilon_1^2(\omega) + \epsilon_2^2(\omega)}} - \epsilon_1(\omega)$$
 S(8)

Open-circuit voltage V_{OC} , short-circuit current J_{SC} , and theoretical power conversion efficiency PCE (η) were calculated by Eqs. S9-12. The maximum short-circuit current J_{SC} is calculated on the assumption that all incident photons with energy greater than the superlattice band gap are absorbed,⁶

$$J_{SC} = e \int_{E_g}^{\infty} \frac{S(E)}{E} dE$$
 S(9)

where e, E, and S(E) are the electronic charge, the energy of an incident photon, and the incident spectral power per unit area, respectively. The open circuit voltage V_{OC} can be estimated by

$$V_{OC} = (E_g - E_{loss}) / e$$
 S(10)

in which E_{loss} is the loss-in-potential and 0.5 eV is adopted similar to the previous report.⁷ The maximum theoretical PCE (η) can be obtained by *J*, V_{OC} , fill factor (*FF*), and the total incident power density (P_{sun}).⁸

$$\eta(E_g) = \frac{FF \times J_{SC} \times V_{OC}}{P_{sun}}$$
 S(11)

$$P_{sun} = \int_{0}^{\infty} S(E) dE$$
 S(12)

According to the solar spectrum data meter provided by the National Renewable Energy Laboratory⁹, the P_{sun} is taken as 100 mW/cm². The fill factor FF is taken as the reported experimental value of 0.731.⁹

	PBE	PBE+SOC	HSE06+SOC
MAPbI ₃	1.687 (1.61) ¹¹	0.666	1.575
FAPbI ₃	1.418 (1.43) ¹²	0.342	1.320

$$\label{eq:solution} \begin{split} \text{Table S1. Calculated band gaps (eV) of MAPbI_3 and FAPbI_3 using PBE, PBE+SOC and \\ \text{HSE06+SOC compared with experimental values (in brackets).} \end{split}$$

 Table S2. Calculated lattice parameters and average monolayer thickness in perovskites and superlattice.

perovskites	<i>a b c</i> (Å)	$\alpha \beta \gamma$ (degree)	$d_{\mathrm{MAPbb}}(\mathrm{\AA})$	$d_{\text{FAPbI}_3}(\text{\AA})$
MAPbI ₃	6.340, 6.330, 6.388 (6.311, 6.311, 6.316) ¹³	90.0, 90.8, 89.9	6.340	
FAPbI ₃	6.489, 6.311, 6.396 (6.42 ¹³ , 6.36 ¹⁵)	90.0, 90.0, 90.0		6.489
(FAPbI ₃) ₂ /(MAPbI ₃) ₂	25.596, 6.319, 6.388	89.9, 90.1, 90.1	6.447	6.352

Fig. S1. Chemical potential region for the thermal equilibrium growth of (a) MAPbI₃ and (b) FAPbI₃ crystal.

Fig. S2. The bulk models of $2 \times 2 \times 2$ supercell used to calculate electrostatic potentials for MAPbI₃ and FAPbI₃.

Fig. S3. Local structures of FAPbI₃/MAPbI₃ superlattice with (a) defect free, (b) V_{Pb}^{2-} , (c) FA_i⁺, (d) FA_I²⁺, (e) Pb_I³⁺, (f) Pb_{MA}⁺.

Fig. S4. TDOS and PDOS of superlattice with (a) defect free, (b) V_{Pb}^{2-} , (c) FA_i^+ , (d) FA_I^{2+} , (e) Pb_I^{3+} , (f) Pb_{MA}^+ . The Fermi level is set to zero (the gray dotted line).

Fig. S5. Band decomposed charge densities distributions of VBM (with an isosurface value of 0.0001 eÅ⁻³) and CBM (with an isosurface value of 0.0002 eÅ⁻³) for the superlattices with and without defects. (a) perfect, (b) V_{Pb}²⁻, (c) FA_i⁺, (d) FA_I²⁺, (e) Pb_I³⁺, (f) Pb_{MA}⁺.

References:

1 Y. Zhao, X. Wang, B. Liu, Z. Yu, P. He, Q. Wan, M. Cai and H. Yu, Geometric structure and photovoltaic properties of mixed halide germanium perovskites from theoretical view, *Org. Electron.*, 2018, **53**, 50-56.

2 J. Even, L. Pedesseau and C. Katan, Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites, *J. Phys. Chem. C*, 2014, **118**, 11566-11572.

3 M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller and F. Bechstedt, Linear optical properties in the projector-augmented wave methodology, *Physical review. B*, 2006, **73**, 45112.

4 V. Wang, N. Xu, J. Liu, G. Tang and W. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, *Comput. Phys. Commun.*, 2021, **267**, 108033.

5 S. H. Wemple and M. DiDomenico, Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials, *Phys. Rev. B*, 1971, **3**, 1338-1351.

6 H. J. Snaith, Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells, *Adv. Funct. Mater.*, 2010, **20**, 13-19.

7 X. Ma and Z. Li, The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation, *Appl. Surf. Sci.*, 2018, **428**, 140-147.

8 W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, *J. Appl. Phys.*, 1961, **32**, 510-519.

9 Source: Data from United States Department of Energy, National Renewable Energy Laboratory, Reference Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel. gov/solar/spectra/am1.5 (accessed: July **202**1).

10 J. Han, S. Luo, X. Yin, Y. Zhou, H. Nan, J. Li, X. Li, D. Oron, H. Shen and H. Lin, Hybrid PbS Quantum-Dot-in-Perovskite for High-Efficiency Perovskite Solar Cell, *Small*, 2018, **14**, 1801016.

11 Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya and Y. Kanemitsu, Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH₃NH₃PbI₃ on

mesoporous TiO₂ electrodes, Appl. Phys. Express, 2014, 7.

12 S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu and G. Cui, NH₂CH=NH₂PbI₃: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells, *Chem. Mater.*, 2014, **26**, 1485-1491.

13 C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, *Inorg. Chem.*, 2013, **52**, 9019-9038.

14 Y. Guo, C. Li, X. Li, Y. Niu, S. Hou and F. Wang, Effects of Rb Incorporation and Water Degradation on the Stability of the Cubic Formamidinium Lead Iodide Perovskite Surface: A First-Principles Study, *J. Phys. Chem. C*, 2017, **121**, 12711-12717.

15 M. T. Weller, O. J. Weber, J. M. Frost and A. Walsh, Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α -[HC(NH₂)₂]PbI₃, at 298 K, *J. Phys. Chem. Lett.*, 2015, **6**, 3209-3212.