**Electronic Supplementary Information (ESI)** 

## Experimental and computational insights into luminescence in atomically precise bimetallic Au<sub>6-n</sub>Cu<sub>n</sub>(MPA)<sub>5</sub> (n=0-2) clusters

Aarti Devi<sup>1</sup>, Harshita Seksaria<sup>1</sup>, Dipankar Bain<sup>1</sup>, Sarita Kolay<sup>2</sup>, Rashi<sup>1</sup>, Abir De Sarkar<sup>1</sup> and Amitava Patra<sup>1,2\*</sup>

<sup>1</sup>Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India <sup>2</sup>School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India

| Contents |                                                                                          | Page       |  |  |
|----------|------------------------------------------------------------------------------------------|------------|--|--|
|          |                                                                                          | No.        |  |  |
| Fig. S1  | MPA and THPC structure                                                                   | S3         |  |  |
| Fig. S2  | TEM image of AuCu-1 NCs with particle size                                               | S3         |  |  |
|          | distribution.                                                                            |            |  |  |
| Fig. S3  | FTIR spectra of MPA ligand, Au NCs, and AuCu-2                                           | S4         |  |  |
|          | NCs.                                                                                     |            |  |  |
| Fig. S4  | Theoretical predicted FTIR Spectra of MPA ligand, Au NCs and AuCu-2 NCs                  |            |  |  |
| Fig. S5  | MALDI-TOF analysis of AuCu-1 NCs.                                                        | S5         |  |  |
| Fig. S6  | Electrophilic Fukui functions of Au <sub>6</sub> , Au <sub>5</sub> Cu <sub>1</sub> , and | S5         |  |  |
|          | Au <sub>4</sub> Cu <sub>2</sub> clusters                                                 |            |  |  |
| Fig. S7  | The lowest-energy unoccupied molecular orbitals                                          | S6         |  |  |
|          | (LUMO) of $Au_6$ , $Au_5Cu_1$ , and $Au_4Cu_2$ clusters                                  |            |  |  |
| Fig. S8  | XPS survey spectra of Au NCs and AuCu(1-2) NCs                                           |            |  |  |
| Fig. S9  | XPS spectra of Au 4f of Au NCs and AuCu(1-2) NCs                                         | S7         |  |  |
| Fig. S10 | XPS spectra of Cu 2p in AuCu-2 NCs                                                       | S7         |  |  |
| Fig. S11 | EPR Spectrum of AuCu-2 NCs.                                                              | S8         |  |  |
| Fig. S12 | DOS plot for (a) Au, (b) AuCu-1, and (c) AuCu-2 NCs                                      | <b>S</b> 8 |  |  |
| Fig. S13 | Excitation dependent PL of Au NCs                                                        |            |  |  |
| Table S1 | XPS Studies of Au 4f in Au NCs and AuCu (1-2) NCs.                                       | S9         |  |  |
| Table S2 | Excitation energy and oscillator strength for the first six                              | S10        |  |  |
|          | singlet excitations for Au and AuCu-2 NCs                                                |            |  |  |



Fig S1: Molecular structures of (A) MPA and (B) THPC



**Fig. S2**: TEM image of AuCu-1 NCs. Inset shows the corresponding particle size distribution.







Fig. S4: Theoretical predicted IR Spectra of (A) MPA Ligand (B) Au NCs, and (C) AuCu-2 NCs.



Fig. S5: MALDI-TOF analysis of AuCu-1 NCs.



Fig. S6: Electrophilic Fukui functions of (a) Au<sub>6</sub>, (b) Au<sub>5</sub>Cu<sub>1</sub>, and (c) Au<sub>4</sub>Cu<sub>2</sub> clusters



Fig. S8: XPS survey spectra of (A) Au NCs and (B) AuCu-1 NCs (C) AuCu-2 NCs



Fig. S9: XPS spectra of Au 4f of (A)Au NCs (B) AuCu-1 NCs (C) AuCu-2 NCs



Fig. S10: XPS spectrum of Cu 2p in AuCu-2 NCs



Fig. S12: DOS plot for (a) Au, (b) AuCu-1, and (c) AuCu-2 NCs



Fig. S13: Excitation-dependent PL of Au NCs.

| Systems    | Au 4f <sub>7/2</sub> B.E (eV) | Au4f <sub>5/2</sub> B.E (eV) | Shift in comparison<br>with Au NCs(eV) |
|------------|-------------------------------|------------------------------|----------------------------------------|
| Au NCs     | 83.51                         | 87.25                        | -                                      |
| AuCu-1 NCs | 83.69                         | 87.38                        | 0.18                                   |
| AuCu-2 NCs | 84.21                         | 87.91                        | 0.70                                   |

**Table S1:** XPS Studies of Au 4f in Au NCs and AuCu NCs.

 Table S2: Excitation energy and oscillator strength for the first six singlet excitations for Au and AuCu-2 NCs

| Nanocomposite | Excitation State | Energy (eV) | Oscillator strength |
|---------------|------------------|-------------|---------------------|
| Au NC         | S1               | 2.81        | 0.0477              |
|               | S2               | 2.94        | 0.0575              |
|               | S3               | 3.13        | 396.10              |
|               | S4               | 3.24        | 382.60              |
|               | S5               | 3.79        | 327.09              |
|               | S6               | 3.88        | 319.67              |
| AuCu-2 NC     | S1               | 2.16        | 0.0282              |
|               | S2               | 2.56        | 0.0445              |
|               | S3               | 2.88        | 0.1742              |
|               | S4               | 3.09        | 0.0168              |
|               | S5               | 3.16        | 0.1519              |
|               | S6               | 3.46        | 0.0156              |