Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Effects of point defects on thermal-mechanical properties of BiCuOTe: a first-principles study

Ming Jiang^{1,+}, Xing-Can Guo^{2,+}, Xiao-Tao Zu^{3,*}, Chandra Veer Singh^{4,5,*}

¹Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

²School of Materials Science and Engineering, Anhui University, Hefei, 230601, Chin

³Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

⁴Department of Materials Science and Engineering, University of Toronto, 184 College Street, Suite 140, Toronto, ON M5S 3E4, Canada

⁵Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada

Figure S1. Total energy of unit-cell of BiCuOTe under different (a) cut-off energies and (b) k-point samplings.

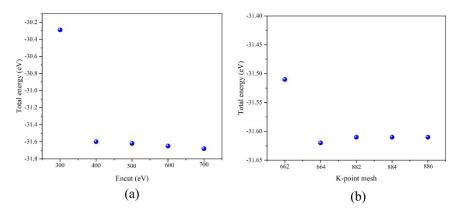


Figure S1

Table S1. The internal energy of Bi, Cu, Te and BiCuOTe obtained from DFT calculations.

	Total energy (eV)	Potential energy (eV/atom)
Bi	-15.43	-3.86
Cu	-16.40	-4.10
Te	-9.47	-3.16
BiCuOTe	-31.62	-

Table S2. The Gibbs free energy (G) of O_2 , H_2 and H_2O . E: Total energy obtained from DFT calculations. \triangle G: the correction to Gibbs free energy.

	Pressure (bar)	Temperature (K)	E (eV)	$\Delta G (eV)$	G (eV)
$O_2(g)$	1	298.15	-	-	-9.91
$H_2(g)$	1	298.15	-6.76	-0.045	-6.80
$H_2O(1)$	0.035	298.15	-14.22	-0.001	-14.22