Supporting Information for

Adsorption of CO₃²⁻/HCO₃⁻ on the Quartz Surface: Cluster Formation, pH Effects, and Mechanistic Aspects

Haotian Feng^{*a,b*}, Xiong Li^{*a,b,**}, Yuhang Xing^{*a,b*}, Liangchen Xie^{*a,b*}, Shuai Zhen^{*a,b*}, Wenqian Chang^{*a,b*}, Jianguo Zhang^{*a,b*}*

^a College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China

^b Taklimakan Desert Research Station, Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences, Korla 841000, China

* To whom correspondence should be addressed:

E-mail: xiongli@nwsuaf.edu.cn; zhangjianguo21@nwsuaf.edu.cn;

Tel: +86-29-87080055; Fax: +86-29-87080055.

	Concentration (M)	CO3 ²⁻	HCO ₃ ⁻	Na^+	Water
pH = 7.5	0.07	0	6	14	4355
	0.14	0	12	20	4327
	0.28	0	24	32	4274
pH = 9.5	0.07	1	5	23	4346
	0.14	2	10	30	4315
	0.28	4	20	44	4260
pH = 11	0.07	5	1	43	4325
	0.14	10	2	54	4294
	0.28	20	4	76	4241

Table S1. Number of Na⁺, HCO₃⁻, CO₃²⁻, and water molecules for each quartz

surface system

	Concentration (M)	CO3 ²⁻	HCO ₃ ⁻	Na^+
pH = 7.5	0.07	0	0.5	3.89
	0.14	0	1.44	5.59
	0.28	0	5.4	10.75
pH = 9.5	0.07	0.3	0.29	11.76
	0.14	0.89	1.56	17.84
	0.28	2.4	4	17.94
pH = 11	0.07	3.03	0.32	33.11
	0.14	7.37	0.53	39.93
	0.28	10	1.2	42.58

Table S2. Number of Na^+ , HCO_3^- and CO_3^{2-} adsorbed on the quartz surface system

Figure S1. Snapshots of cluster evolution with the simulation processes of 0.28 M NaHCO₃ and Na₂CO₃ solutions at pH = 7.5, 9.5, and 11 interacting with quartz surfaces. (a) for pH = 7.5, (b) for pH = 9.5, and (c) for pH = 11, respectively.

Otherwise noted, the concentration indicates the mole concentration of total carbon fraction in NaHCO₃ and Na₂CO₃ (The same below). Si, O, H of quartz, Na, and C of HCO_3^- are presented as yellow, red, white, blue, and cyan balls; CO_3^{2-} is presented as green sticks; Water molecules are presented as cyan lines.

(a) pH = 7.5

Figure S2. Snapshots of adsorption behavior with the simulation processes of 0.28 M NaHCO₃ and Na₂CO₃ solutions at pH = 7.5, 9.5, and 11 interacting with quartz surfaces. (a) for pH = 7.5, (b) for pH = 9.5, and (c) for pH = 11, respectively. And all quartz surfaces had no charge.

Figure S3. Cluster number of HCO_3^- or CO_3^{2-} in 0.14 M carbonate solutions varied with simulation time. (a) for pH = 7.5, (b, c) for pH = 9.5, (d, e) for pH = 11, respectively. Number of clusters, average number of molecules in clusters, and number of molecules in the largest clusters are calculated, respectively.

Figure S4. The local structures of HCO_3^- (a, b, d) and CO_3^{2-} (c, e) at the quartz surfaces at pH = 7.5 (a), 9.5 (b, c), and 11 (d, e). The concentration of NaHCO₃ and Na₂CO₃ solution is 0.28 M. a, b, d for HCO_3^- and c, e for CO_3^{2-} .

Figure S5. Atomic density profiles (ADPs) of Na⁺ ions normal to the surface of quartz.
(a), (b), and (c) correspond 0.28, 0.14, and 0.07 M carbonate solutions, respectively.
The pH values are indicated in the legends.

Figure S6. Time-evolution number of hydrogen bonds (N(HB)) of the carbonate species HCO_3^- and CO_3^{2-} at 0.14 M (a-c) and the 0.07 M (d-f).

(a, d), (b, e), and (c, f) for pH = 7.5, 9.5, and 11, respectively.