Supplementary Information for

Restriction of Crossing Conical Intersections: The Intrinsic

Mechanism of Aggregation-induced Emission

Jie Peng^{†ab}, Xin He^{†a}, Yao Li^b, Jianxin Guan^a, Baihua Wu^a, Xinmao Li^a, Zhihao Yu^a, Jian Liu^{*a}, and Junrong Zheng^{*a}

^a College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China. E-mail: junrong@pku.edu.cn & jianliupku@pku.edu.cn

^b Sinopec Nanjing Research Institute of Chemical Industry CO., Ltd., Nanjing 210048, China

[†]These authors contributed equally to this work.

1. UV-Vis absorption and fluorescence spectra

Fig. S1. UV-Vis absorption in dilute THF solution (a, d and f) and fluorescence

spectra in water/THF solution (b and g) and in the solid state (c, e and h) of triphenylethylene, cis-stilbene and trans-stilbene. The absorbance of the three molecules is relatively strong at 300 nm, so 300 nm is selected as the excitation wavelength for fluorescence and ultrafast experiments. In water/THF solutions, with the increase of water proportion, the fluorescence intensity of triphenylethylene and trans-stilbene in solution grows significantly, while that of cis-stilbene is too weak to detect. The fluorescence spectrum of cis-stilbene in soluti at 77 K because it is liquid at room temperature.

2. Anisotropy of triphenylethylene in solid state

Fig. S2. Anisotropy of the excited absorption peaks of triphenylethylene in solid state excited with 300 nm. The anisotropy of the main peaks, 1437 cm⁻¹ and 1484 cm⁻¹, remain constant within dozens of ps, indicating that the energy/charge transfer between molecules in the solid state is extremely weak.

3. GC-MS characterizations

Fig. S3. GC-MS characterizations of triphenylethylene after UV irradiation in THF (100 mM). (a) The elution curves and (b, c) the mass spectra of each substance eluted from the chromatographic column. A small peak assigned as the oxidation

product of the intermediate phenyl-DHP emerges, indicating the photocyclization of triphenylethylene.

Fig. S4. GC-MS characterizations of cis-stilbene and trans-stilbene after UV irradiation in THF (100 mM). The main elution substances of cis-stilbene and trans-stilbene are similar but the peak intensities are different. In the elution curve of the cis-stilbene solution, the peak of cis-stilbene is stronger than that of trans-stilbene, while in the solution of trans-stilbene, those two peaks are comparable, and the peak intensity of phenanthrene is relatively small in both solutions. It comes from the different stabilities and photoreaction processes of cis-stilbene and trans-stilbene in solution, that is, cis-stilbene is more stable and can be directly photocyclized and isomerized

simultaneously, while trans-stilbene first undergoes isomerization to produce cisstilbene which is photocyclized afterwards.

4. Molecular geometries of triphenylethylene and stilbene

We attach the molecular geometries of the paths in Figs. 3-4 and Figs. 7-8 of the main text as the multi-frame xyz files. The details of these xyz files are shown below. Note that we label frames starting from 0.

Fig3(a)_path.xyz: The molecular geometries of the path in panel (a) of Fig. 3. The 0th, 50th and 100th represent the geometries of triphenylethylene, twist-CI and triphenylethylene (another orientation), respectively. The first 51 frames represent the path that parameterized by n=0, 0.02, ..., 1 (left side axis), respectively. The last 51 frames represent the path that is parameterized by m=1, 0.98, ..., 0 (right side axis), respectively.

Fig3(b)_path.xyz: The molecular geometries of the path in panel (b) of Fig. 3. The 0th, 50-th and 100-th represent the geometries of triphenylethylene, cyclic-CI and phenyl-DHP, respectively. The first 51 frames represent the path that parameterized by n=0, 0.02, ..., 1 (left side axis), respectively. The last 51 frames represent the path that parameterized by m=1, 0.98, ..., 0 (right side axis), respectively.

Fig4(a)_path.xyz: Same as Fig3(a)_path.xyz, but for the path in panel (a) of Fig. 4.

Fig4(b)_path.xyz: Same as Fig3(b)_path.xyz, but for the path in panel (b) of Fig. 4.

Fig7(a)_path.xyz: The molecular geometries of the path in panel (a) of Fig. 7. The 0th, 50-th and 100-th represent the geometries of trans-stilbene, twist-CI and cis-stilbene, respectively. The first 51 frames represent the path that parameterized by n=0, 0.02, ..., 1 (left side axis), respectively. The last 51 frames represent the path that parameterized by m = 1, 0.98, ..., 0 (right side axis), respectively.

Fig7(b)_path.xyz: The molecular geometries of the path in panel (b) of Fig. 7. The 0th, 50th and 100th represent the geometries of cis-stilbene, cyclic-CI and DHP, respectively. The first 51 frames represent the path that parameterized by n=0, 0.02, ..., 1 (left side axis), respectively. The last 51 frames represent the path that parameterized by m=1, 0.98, ..., 0 (right side axis), respectively.

Fig8(a)_path.xyz: Same as Fig7(a)_path.xyz, but for the path in panel (a) of Fig. 8.

Fig8(b)_path.xyz: Same as Fig7(b)_path.xyz, but for the path in panel (b) of Fig. 8.