Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Information

for

Stable Multifunctional Aluminum Phosphides at High Pressures

Yuan Su^a, Haiyan Wang^{a,*}, Simin Li^a, Weiguo Sun^b, Dan Li^c, Feng Peng^{b,a*}

^aSchool of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China

^bCollege of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China

^cPublic experimental teaching center, Panzhihua University, Panzhihua 617000, China

Supplementary Figures

Figure S1. Crystal structures of stable Al-P compounds. (a) F-43m phase of AlP at ambient pressure. (b) $P6_3/mmc$ phase of AlP at 20 GPa. (c) $P2_13$ phase of AlP at 50 GPa. (d) C2/m phase of AlP at 100 GPa. (e) Pnma phase of AlP at 100 GPa. (f) Pnma phase of Al₂P at 150 GPa. (g) P1 phase of Al₃P at 150 GPa. The small blue and large grey represent P and Al atoms, respectively.

Figure S2. (a) Calculated ELF plots in (-1, 0, -3) section of AlP_2 in the *I4/mmm* phase of 100 GPa. (b) Calculated ELF plots in (0, 1, 0) section of AlP_3 in the *Immm* phase of 150 GPa. (c) Calculated ELF plots in (1, -3, 1) section of Al_2P in the *I4/mmm* phase of 100 GPa. (d) Calculated ELF plots in (1, 1, 2) section of Al_3P in the *P*1 phase of 150 GPa. The large atom is Al, and the small atom is P

Figure S3. Plots of the COHP and ICOHP of Al-P and P-P, respectively. (a) AlP₂ for *I*4/*mmm* phase at 100 GPa. (b) AlP₃ for *Immm* phase at 150 GPa. (c) Al₂P for *I*4/*mmm* phase at 100 GPa. (d) Al₃P for *P*1 phase at 150 GPa.

Figure S4. Energy band structure and density of states for Al-P phases. (a), (b) and (c) represent *I4/mmm* phase of AlP₂ at 100 GPa, *I4/mmm* phase of Al₂P at 100 GPa, *P*1 phase of Al₃P at 150 GPa, respectively.

Figure S5. Calculated phonon spectra, and phonon density of states (PhDOS), Eliashberg spectral function $\alpha^2 F(\omega)$, and electron-phonon coupling integral $\lambda(\omega)$ of AlP₂ at 100 GPa.

Figure S6. (a) Phonon dispersion curves of AlP_2 in the *I4/mmm* phase at 100 GPa. (b) Phonon dispersion curves of AlP_3 in the *Immm* phase at 150 GPa. (c) Phonon dispersion curves of Al_3P in the *P*1 phase at 100 GPa. (d) Phonon dispersion curves of Al_2P in the *I4/mmm* phase at 100 GPa.

Figure S7. The optical absorption coefficient of *P*21-AlP₂ at 0 GPa.

Supplementary Tables

Space group	Lattice parameters Atomic coordinates (fractional)						
Pressure	(Å, °)						
F-43m-AlP	a = 5.506	Al1	0.000	0.000	0.000	4a	
0 GPa	b =5.506	P1	0.250	0.250	0.250	4c	
	c =5.506						
	$\alpha = \beta = \gamma = 90$						
P63/mmc-AlP	a = 3.424	Al1	0.000	0.000	0.000	2a	
20 GPa	b = 3.424	P1	0.667	0.333	0.250	2d	
	c = 5.539						
	$\alpha = \beta = 90$						
	$\gamma = 120$						
<i>P</i> 2 ₁ 3 - AlP	a = 4.510	Al1	0.062	0.062	0.062	4a	
60 GPa	b=4.510	P1	0.445	0.445	0.445	4a	
	c =4.510						
	$\alpha=\beta=\gamma=90$						
<i>C</i> 2/ <i>m</i> - AlP	a = 7.918	Al1	0.886	-0.000	0.667	4i	
100 GPa	b = 2.737	P1	0.136	0.500	0.845	4i	
	c = 3.775						
	$\alpha = \gamma = 90$						
	$\beta = 108.368$						

Table S1. Structural information of predicted Al-P phases.

Pnma - AlP	a = 4.052	Al1	-0.103	0.250	0.875	4c
150 GPa	b = 3.799	P1	0.105	0.750	0.627	4c
	c = 4.511					
	$\alpha = \beta = \gamma = 90$					
$P2_1 - AlP_2$	a = 6.799	Al1	0.000	0.000	0.000	2a
0 GPa	b = 6.692	Al2	0.500	0.500	0.500	2d
	c = 5.098	P1	0.297	0.250	0.138	2e
	$\alpha = \gamma = 90$	P3	0.524	0.750	0.144	2e
	$\beta = 111.285$	P5	0.197	0.750	0.413	2e
		P7	0.810	0.250	0.165	2e
$I4/mmm - AlP_2$	a = 2.709	Al1	0.500	0.500	0.500	2a
100 GPa	b = 2.709	P1	0.000	0.000	0.324	4e
	c = 7.804					
	$\alpha = \beta = \gamma = 90$					
<i>Immm</i> - AlP ₃	a = 2.666	Al1	-0.000	0.500	0.000	2d
150 GPa	b = 3.650	P1	0.500	-0.000	0.000	2b
	c = 7.055	P2	0.500	0.500	0.268	4i
	$\alpha = \beta = \gamma = 90$					
<i>I</i> 4/ <i>mmm</i> - Al ₂ P	a = 2.867	Al1	-1.500	0.500	0.162	4e
100 GPa	b = 2.867	P1	-2.000	0.000	0.000	2a
	c = 7.210					
	$\alpha = \beta = \gamma = 90$					
$Pnma$ - Al_2P	a = 4.661	Al1	0.140	0.750	-0.925	4c
150 GPa	b = 3.254	A13	0.389	0.250	-0.759	4c
	c = 6.985	P1	0.358	0.250	-0.095	4c
	$\alpha = \beta = \gamma = 90$					
$P1 - Al_3P$	a = 4.021	All	0.758	0.623	0.806	1a
150 GPa	b = 4.038	Al2	0.753	0.130	0.559	1a
	c = 4.630	Al3	0.254	0.875	0.939	1a
	$\alpha = 89.753$	Al4	0.242	0.377	0.194	1a
	$\beta = 105.829$	A15	0.247	0.870	0.441	1a
	$\gamma = 81.222$	Al6	0.746	0.125	0.061	1a
		P1	0.738	0.626	0.304	1a
		P2	0.262	0.374	0.696	1a

 Table S2. Calculated elastic constants (GPa) of AlP and AlP2 at atmospheric pressure.

Table S2. Calculated elastic constants (GPa) of AIP and AIP ₂ at atmospheric pressure.													
Structure	C ₁₁	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₁₄	C ₁₅	C ₂₅	C ₃₅	C ₄₆
<i>P</i> 2 ₁	175.68	184.97	228.94	37.41	59.31	52.27	29.24	36.48	39.72	-2.99	-5.99	-12.5	7.6
F-43m	126.56			60.51			61.38						