Supplementary Information

A new look at the structure of the neutral Au₁₈ cluster: Hollow versus filled golden cage

Pham Vu Nhat,^{a,b*} Nguyen Thanh Si,^a André Fielicke,^c Vitaly G. Kiselev,^{d,e} and Minh Tho Nguyen^{f,*}

^{a)} Department of Chemistry, Can Tho University, Can Tho, Vietnam

- ^{b)} Molecular and Materials Modeling Laboratory, Can Tho University, Can Tho, Vietnam
- ^{c)} Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, Germany
- ^{d)} Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
- ^{e)} Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia

^{f)} Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam. Email: <u>tho.nm@icst.org.vn</u>

Figure S1. Distorted tetrahedral Au_4 (left) and octahedral Au_6 (right) units found in 18_1 isomer.

Figure S2. Experimental FIR-MPD of Au_n-Kr (n = 17 - 20) clusters.

Figure S3. Shapes of orbitals in 18_5 formed from orbital interactions between the Au₁₇ framework and the exohedral Au atom.

Figure S4. Binding energies per atom (E_b), one-step fragmentation energies (E_f) and secondorder difference of energy ($\Delta^2 E$) for neutral Au_n clusters as a function of cluster size. Results are obtained using both revTPSS and TPSS-D3 functionals.

Method	Au ₂	Au ₇		Au19		Au ₂₀	RMSD ^{b)}	
PW91	173	155	175	188	135	152	137	13.2
PBE	172	154	174	186	135	153	136	13.9
B3LYP	166	145	163	177	122	144	125	23.5
BLYP	161	142	159	173	118	143	122	27.0
TPSS	178	159	180	193	144	160	144	7.4
TPSS-D3	176	158	179	192	141	160	142	8.8
Experiment ^{a)}	191	165	186	201	149	166	148	-

Table S1. Vibrational frequencies (cm^{-1}) of the most intense peaks in some small Au_n clusters at
their equilibrium structures, computed with different functionals in comparison with
experimental data.

 $^{a)}$ Taken from ref. S1. Value for Au $_2$ is taken from ref. S2

^{b)} Root-mean-square deviations from experimental values.

Table S2. Low-lying isomers of the Au18 cluster and their Cartesian coordinates (in Å)located using TPSS-D3/aVDZ-PP geometry optimizations.

Isomer		Cartesian coordinates				
	79	0.256660000	-0.000797000	3.150669000		
	79	-0.738454000	-2.224518000	-1.838007000		
	79	0.837817000	3.504424000	0.000000000		
	79	1.882760000	1.386305000	1.423766000		
	79	-0.720336000	2.231336000	1.837811000		
	79	1.872302000	-1.402836000	-1.423390000		
	79	1.872302000	-1.402836000	1.423390000		
	79	0.807599000	-3.512146000	0.000000000		
10 1	79	-2.358513000	0.009984000	2.106820000		
18_1	79	-0.738454000	-2.224518000	1.838007000		
	79	3.765549000	-0.014318000	0.000000000		
	79	-2.358513000	0.009984000	-2.106820000		
	79	0.256660000	-0.000797000	-3.150669000		
	79	-0.720336000	2.231336000	-1.837811000		
	79	-2.719689000	-1.745261000	0.000000000		
	79	-2.704910000	1.768114000	0.000000000		
	79	1.882760000	1.386305000	-1.423766000		
	79	-0.375205000	0.000238000	0.000000000		
	79	3.220200000	-0.930680000	0.000000000		
	79	0.387282000	0.076152000	0.000000000		
	79	-0.108900000	1.737709000	2.300167000		
	79	2.493105000	1.325983000	-1.477793000		
	79	0.750236000	2.918239000	0.000000000		
	79	1.612744000	-1.242446000	2.229571000		
	79	1.077618000	-2.767320000	0.000000000		
	79	2.493105000	1.325983000	1.477793000		
-	79	-0.510924000	-0.618219000	3.746494000		
18 2	79	-1.125572000	-1.866824000	-1.393695000		
	79	-0.108900000	1.737709000	-2.300167000		
	79	-1.125572000	-1.866824000	1.393695000		
	79	1.612744000	-1.242446000	-2.229571000		
	79	-0.510924000	-0.618219000	-3.746494000		
	79	-3.243486000	-0.795171000	0.000000000		
	79	-1.833886000	1.840575000	0.000000000		
	79	-2.539435000	0.492899000	-2.272614000		
	79	-2.539435000	0.492899000	2.272614000		
	79	-1.972593000	1.384024000	0.289269000		
	79	1.393290000	-2.380523000	-2.205929000		
	79	1.972593000	-1.384024000	0.289269000		
	79	0.000000000	-1.731438000	2.197396000		
	79	-1.393290000	-2.380523000	-2.205929000		

	70	1 072503000	1 38/02/000	0.280260000
	79	-1.972393000	-1.384024000	2 615060000
<u> </u>	79	-2.13//89000	0.000000000	2.013009000
	79	2.731000000	0.000000000	-1.981623000
	/9	-1.393290000	2.380523000	-2.205929000
	/9	-2./31666000	0.000000000	-1.981623000
	79	0.000000000	1.731438000	2.19/396000
	79	0.000000000	3.275468000	0.003706000
	79	2.157789000	0.000000000	2.615069000
	79	0.000000000	-3.275468000	0.003706000
18 3	79	0.000000000	0.000000000	-2.329379000
10_5	79	1.393290000	2.380523000	-2.205929000
	79	1.972593000	1.384024000	0.289269000
	79	0.000000000	0.000000000	4.326925000
<u>_</u>	79	-0.187964000	-0.136867000	3.423670000
	79	-0.187964000	-0.136867000	-3.423670000
	79	-0.612618000	2.006873000	1.864402000
	79	-0.612618000	2.006873000	-1.864402000
	79	-0.817819000	4.005404000	0.000000000
	79	-1.961743000	-0.374375000	1.363197000
	79	-2.624718000	1.871318000	0.000000000
	79	-1.961743000	-0.374375000	-1.363197000
	79	-0.652004000	-2.608443000	-2.354984000
18 4	79	-2.033279000	-2.779988000	0.000000000
	79	-0.652004000	-2.608443000	2.354984000
	79	1.428718000	2.450499000	0.000000000
	79	1.989625000	1.197021000	2.353523000
	79	1.989625000	1.197021000	-2.353523000
	79	0.755173000	-2.432970000	0.000000000
	79	2.304186000	-0.147550000	0.000000000
	79	1.918574000	-1.567565000	2.287200000
	79	1.918574000	-1.567565000	-2.287200000
	79	-0.434786000	-2.862584000	0.00000000
	79	1.531562000	3.788108000	0.000000000
	79	1.386799000	-0.296271000	2.267128000
	79	1 186141000	-3.031325000	-2.201280000
	79	2.058477000	-1 594537000	0.000000000
	79	-1 183180000	-1 583880000	2 273479000
	79	-2.715622000	-1 358128000	0.000000000
	79	1 186141000	-3 031325000	2 201280000
10 5	79	-0 742745000	0.639482000	3 809093000
18_5	79	-1 860870000	0.889565000	-1 335677000
	79	1 386799000	-0.296271000	-2 267128000
	79	-1 860870000	0.889565000	1 335677000
	70	-1 183180000	-1 583880000	-2 273/70000
	70	_0 7/27/5000	0 639/182000	-3 800003000
	70	-0.7+2743000	3 1/18162000	0 0000000000000000000000000000000000000
		1.102027000	J.1-0102000	0.0000000000000000000000000000000000000

	1			
	79	2.056649000	1.103473000	0.000000000
	79	0.558234000	2.270182000	-2.030978000
	79	0.558234000	2.270182000	2.030978000
	79	0.114121000	-0.423473000	3.120924000
	79	-1.875539000	-1.299728000	-1.428727000
	79	2.780466000	1.954571000	0.000000000
	79	2.248897000	-0.295758000	1.413560000
	79	0.688566000	1.900425000	1.849055000
	79	0.583286000	-2.488523000	-1.413798000
	79	0.583286000	-2.488523000	1.413798000
	79	-1.526168000	-3.574069000	0.000000000
	79	-1.953836000	1.235134000	2.350974000
18 6	79	-1.875539000	-1.299728000	1.428727000
	79	2.932172000	-2.555842000	0.000000000
	79	-1.953836000	1.235134000	-2.350974000
	79	0.114121000	-0.423473000	-3.120924000
	79	0.688566000	1.900425000	-1.849055000
	79	-3.297934000	0.543447000	0.000000000
	79	-1.348935000	2.435694000	0.000000000
	79	2.248897000	-0.295758000	-1.413560000
	79	0.849407000	3.940044000	0.000000000
	79	3.318086000	-0.164022000	1.371145000
	79	1.235884000	-1.454442000	2.678568000
	79	-0.804886000	-2.677792000	1.476071000
	79	-0.804886000	-2.677792000	-1.476071000
	79	1.235884000	-1.454442000	-2.678568000
	79	3.318086000	-0.164022000	-1.371145000
	79	1.433704000	-1.762855000	0.000000000
Ŭ	79	1.446464000	1.372646000	2.696438000
10 7	79	1.219617000	1.181532000	0.000000000
18_/	79	1.446464000	1.372646000	-2.696438000
	79	-0.919167000	0.068561000	1.785377000
	79	-2.687221000	-1.131340000	0.000000000
	79	-0.919167000	0.068561000	-1.785377000
	79	-0.530618000	2.783836000	-1.568850000
	79	-0.530618000	2.783836000	1.568850000
	79	-2.532776000	1.496187000	0.000000000
	79	-2.737123000	-3.828175000	0.000000000
	79	-2.187726000	4.187077000	0.000000000

References

- S1. P. Gruene, D. M. Rayner, B. Redlich, A. F. van der Meer, J. T. Lyon, G. Meijer and A. Fielicke, *Science*, 2008, **321**, 674-676.
- S2. M. D. Morse, Chem. Rev., 1986, 86, 1049-1109.