Supporting Information

Tuning the electrochemical behavior of graphene oxide and reduced graphene oxide via doping hexagonal BN for high capacity negative electrode for Li and Na ion batteries

Siraj Ud Daula Shamim^{1*}, Afiya Akter Piya¹, Mohammad Sadiqur Rahman², Syed Mahedi Hasan³, Md Kamal Hossain², Farid Ahmed²

¹Department of Physics, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.

²Department of Physics, Jahangirnagar University, Dhaka, Bangladesh.

³ Baylor University, Texas, USA.

*Corresponding author: Email: <u>sdshamim@mbstu.ac.bd</u> (Siraj Ud Daula Shamim)

Figure S1: Front and side views of optimized BN-G with diverse number of (a) 4Li, (b) 8Li, (c) 10Li, (d) 4Na, (e) 8Na and (f) 10Na atoms respectively.

Figure S2: Front and side views of optimized BN-GO with diverse number of (a) 4Li, (b) 8Li, (c) 10Li, (d) 4Na, (e) 8Na and (f) 10Na atoms respectively.

Figure S3: Front and side views of optimized BN-rGO with diverse number of (a) 4Li, (b) 8Li, (c) 10Li, (d) 4Na, (e) 8Na and (f) 10Na atoms respectively.

Figure S4: Deformation density map for most stable adsorption site for Li adsorption on (a) BN-G, (b) BN-GO and (c) BN-rGO and diverse number of (d) 4 Li, (e) 8 Li and (f) 12 Li on BN-rGO; where red color indicates the electron enrichment area and blue color indicates the electron deficient area. The iso-surface is set at ± 0.02 e/Å³.

Figure S5: PDOS of Li atom adsorption on (a) BN-G, (b) BN-GO and (c) BN-rGO nanosheets and Na atom adsorption on (d) BN-G, (e) BN-GO and (f) BN-rGO at most stable adsorption sites.

Figure S6: Spin polarized PDOS of BN-rGO nanosheet with diverse number of a) Li and b) Na atoms.