S-functionalized 2D V₂B as promising anode materials for

rechargeable lithium ion batteries

Yuhang Wang,^a Ninggui Ma,^a Yaqin Zhang,^a Bochun Liang,^a Jun Zhao,^a and Jun Fan^{a, b,*}

^a Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.

^b Center for Advance Nuclear Safety and Sustainable Department, City University of Hong Kong,

Hong Kong, China

*Corresponding author

Email address: junfan@cityu.edu.hk (Jun Fan)

Fig. S1

Fig. S1 Top (a) and side (b) view of pristine V₂B. Possible sites for functional atoms are labelled as I (c), II (d), and III (e).

Fig. S2

Fig. S2 The partial density of states (PDOS) for V (a), B (b), and S (c) in V₂BS₂.

Fig. S3

Fig. S3 Band structure of V_2BS_2 using HSE06 functional.

Fig. S4 Top view of possible adsorption sites for metal ions (a), side view for adatom at different sites: (b) on the top of B atom, (c) on the top of V1 atom, (c) on the top of V2 atom.

Fig. S5 Adsorption configurations side view and top view for one M layer on V_2BS_2 monolayer: (a) α site, (b) β site, and (c) γ site.

Fig. S6

Fig. S6 Density of states (DOS) of stoichiometry of (a) $V_2BS_2Li_2$ and (b) $V_2BS_2Na_2$.

Fig. S7

Fig. S7 The variation of the free energy during AIMD simulation at 300 K for stoichiometry of (a) $V_2BS_2Na_2$ and (b) $V_2BS_2K_2$. Side views of (c) $V_2BS_2Na_2$ and (d) $V_2BS_2K_2$ after simulation.

Table S1

	Lattice constant (Å)	Bond length	Bond length Thickness		Ref.
		(V-C/N/B) (Å)	(V-S) (Å)		
V ₂ BS ₂	3.05	2.13	2.34	5.47	This work
V_2CS_2	3.06	2.08	2.37	5.34	[1]
V_2NS_2	3.09	2.06	2.35	/	[2]
Ti_2NS_2	3.17	2.07	2.39	/	[3]
Ti_2CS_2	3.197	2.211	2.406	/	[4]
Ti ₂ BS ₂	3.50	2.306	2.392	4.78	[5]

Table S1 Comparison of the lattice constant, bond length, layer thickness of V_2BS_2 with other related materials.

Table S2

Adatoms	Adsorption sites	E_{ad}^{1st}	E^{2nd}_{ad}	E^{3rd}_{ad}
	α	-0.530	-0.023	0.030
Li	β	-0.702	0.058	0.035
	γ	-0.166	-0.044	0.132
	α	-0.306	0.113	/
Na	β	-0.327	0.122	\
	γ	-0.099	0.112	\
	α	0.469	/	/
Κ	β	0.426	\	\
	γ	0.889	\	\

Table S2 Summary of adsorption energy (unit: eV) for Li, Na, and K at different sites on V₂BS₂.

^a "\" means the corresponding V₂BS₂ can't adsorb full layer of Li/Na/K.

References

- 1. Yan, B., et al., *Oxygen/sulfur decorated 2D MXene V₂C for promising lithium ion battery anodes.* Materials Today Communications, 2020. **22**: p. 100713.
- 2. Shukla, V., et al., Modelling high-performing batteries with Mxenes: The case of S-functionalized two-dimensional nitride Mxene electrode. Nano Energy, 2019. **58**: p. 877-885.
- 3. Yao, C., et al., *Properties of S-Functionalized Nitrogen-Based MXene (Ti₂NS₂) as a Hosting Material for Lithium-Sulfur Batteries*. Nanomaterials, 2021. **11**(10): p. 2478.
- 4. Siriwardane, E.M., et al., *Assessment of Sulfur-functionalized MXenes for Li-ion Battery applications*. The Journal of Physical Chemistry C, 2020. **124**(39): p. 21293-21304.
- 5. Wang, Y., et al., Exploring the potential of Ti_2BT_2 (T = F, Cl, Br, I, O, S, Se and Te) monolayers as anode materials for lithium and sodium ion batteries. Applied Surface Science, 2022. **596**: p. 153619.