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I. RESULTS OBTAINED FROM AVERAGED STS RATE COEFFICIENTS
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(c)Population Distribution at t = 1e-7 s (top) and

quasi-steady state (bottom)

Figure S1: Solutions of the master equation for the O2+O system. The results in black are

obtained using QCT state-to-state (StS) rate coefficients. The results in red, instead, are produced

by applying (v ± 2, J ± 2) window-averaging over the same QCT database before running the

master equation, as proposed by Koner et al. (i.e., Eq. 1 of reference1). Comparisons are made for

the (a) mole fraction, (b) evolution of rotational and vibrational energies, and (c) population

distributions at two time-instants. All the results are obtained by considering a translational

temperature T = 10,000 K.
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II. RATE PATTERNS
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Figure S2: Patterns observed in StS reaction rate coefficients for dissociation processes. While we

only report the results at T = 10,000 K, similar patterns have also been observed at all the other

analyzed temperatures.

Figure S3: The 90 columns of the T = 20, 000 K state-to-state reaction rate coefficient matrix

used to train the SurQCT surrogate for the O2+O inelastic processes. Four additional matrices

with only 90 non-zero columns each are also included as training data, corresponding to coefficients

at T = 1, 500, 5, 000, 10, 000, 15, 000 K. The figure aims to show the relative sparsity of the training

data compared to the original rate coefficient matrices.
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III. ARCHITECTURES OF THE THREE SURROGATE COMPONENTS
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Figure S4: Feed-forward neural network (FNN) architecture used for dissociation reaction rates

surrogation. The input vector is: x = [∆ECB, log10 (rmax) , log10 (ro) , T ]
T. A dropout layer with a

rate of 10−3 is applied at the end of each hidden layer, excluding the last one. L1 and L2

regularization parameters are set to 10−4 and 10−5, respectively.
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Figure S5: Unstacked deep operator network (DeepONet) architecture used for inelastic reaction

rate coefficients surrogation. The inputs to the branch are: u = [log10 (ϵV ib), log10 (ϵRot), log10 (ro),

T ]T and to the trunk are: y = [∆ log10 (ϵV ib), ∆ log10 (ϵRot), ∆ log10 (ro), T ]
T. A dropout layer with

a rate of 10−2 is applied at the end of each hidden layer, excluding the last one. L1 and L2

regularization parameters are set to 10−5 and 10−5, respectively.
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Figure S6: Unstacked deep operator network (DeepONet) architecture used for inelastic reaction

rate coefficients surrogation. The inputs to the branch are: u = [log10 (ϵV ib), log10 (ϵRot), log10 (ro),

T ]T and to the trunk are: y = [∆ log10 (ϵV ib), ∆ log10 (ϵRot), ∆ log10 (ro), T ]
T. A dropout layer with

a rate of 10−3 is applied at the end of each hidden layer, excluding the last one. L1 and L2

regularization parameters are set to 10−4 and 10−4, respectively.
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IV. WEIGHTING SCHEME FOR THE NEURAL NETWORK LOSS FUNCTION

Rate Coefficients Value Weight

K > 10−9 15.0

10−10 < K ≤ 10−9 12.0

10−11 < K ≤ 10−10 9.0

10−12 < K ≤ 10−11 6.0

10−13 < K ≤ 10−12 3.0

K ≤ 10−13 1.0

Table I: Weighting scheme for the loss function based on the magnitude of the reaction rate

coefficients for all collisional processes.
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V. QUALITY OF SURQCT PREDICTIONS FOR THE REACTION RATE

COEFFICIENTS
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Figure S7: R2 values for the SurQCT predictions computed with respect to the reference QCT

dissociation reaction rate coefficients.
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VI. INELASTIC AND EXCHANGE REACTION RATE COEFFICIENTS

(a)Full StS Inelastic Rate Coefficient Matrix
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(b)Zoomed-in StS Inelastic Rate Coefficient Matrix

Figure S8: Comparison between inelastic rate coefficients from QCT and SurQCT predictions at

T = 2,500 K.
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(a)Full StS Inelastic Rate Coefficient Matrix
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(b)Zoomed-in StS Inelastic Rate Coefficient Matrix

Figure S9: Comparison between inelastic rate coefficients from QCT and SurQCT predictions at

T = 20,000 K.

S10



Sharma et al.

0.0

2.5

5.0

7.5

−5.0 −2.5
0.0

2.5

5.0

7.5

−5.0 −2.5
εV ib [eV]

ε R
o
t
[e

V
]

−14.0 −13.5 −13.0 −12.5

log10KExch [cm3/s]

Figure S10: Comparison between exchange rate coefficients from QCT and SurQCT predictions

at T = 2,500 K.

S11



Sharma et al.

0.0

2.5

5.0

7.5

−5.0 −2.5
0.0

2.5

5.0

7.5

−5.0 −2.5
εV ib [eV]

ε R
o
t
[e

V
]

−14.0 −13.5 −13.0 −12.5

log10KExch [cm3/s]

Figure S11: Comparison between exchange rate coefficients from QCT and SurQCT predictions

at T = 20,000 K
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VII. NON-BOLTZMANN POPULATION DISTRIBUTION
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Figure S12: Population distribution comparison between QCT-based solutions and SurQCT-based

solutions at t = 1e-7s for T = 8,000 K (top) and t = 5e-8s for T = 20,000 K (bottom).
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VIII. COMPARISON OF TRAINING A FEED-FORWARD NEURAL NETWORK

A feed-forward NN with the same optimization, activation functions and number of parameters

as the DeepONet is trained for inelastic rate coefficients. This is done to demonstrate and justify the

use of the DeepOnet architecture.
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Figure S13: (a) Evolution of rotational and vibrational energies in isothermal heat bath

simulations at different translational temperatures. The continuous lines refer to simulations that

rely on complete QCT rate coefficient databases, while the dashed lines are obtained based on rate

coefficients predicted by the trained FNN. (b) Comparison of rotation and vibration relaxation

times.

Layers: [7-in,100,100,100,1-out]; Act. fun.: [tanh - tanh - tanh - linear]; Tot. parameters: 21,101
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