# Modeling of minimal systems based on ATP-Zn coordination for chemically fueled self-assembly

#### Emma Rossi,<sup>a</sup> Alberta Ferrarini,<sup>\*a</sup> and Marialore Sulpizi<sup>\*b</sup>

<sup>a</sup> Department of Chemical Sciences, University of Padova, Via Francesco Marzolo, 1, 35131, Padova,

Italy

 $\ast$ E-mail: alberta.ferrarini@unipd.it

<sup>b</sup> Department of Physics, Ruhr Universität Bochum, NB6,65, 44780, Bochum, Germany

\* E-mail: Marialore.Sulpizi@rub.de

# Supporting Information

#### S1. Hysteresis assessment

Table 1: Free energy (FE) from WT-MTD simulations of MTP-[ZnCH<sub>3</sub>TACN]<sup>2+</sup> in water, starting from ion-contact (i.c.) and from water-mediated (w.m.) coordination. All quantities are expressed in kcal/mol and the ground state is taken as a reference. The uncertainty  $\Delta$ FE is calculated as the semi-difference between the two simulations.

| Configuration      | FE (i.c.) | FE (w.m.) | Average FE | $\Delta FE$ |
|--------------------|-----------|-----------|------------|-------------|
| $\alpha\gamma$     | 0         | 0         | 0          | 0           |
| $lpha\gamma\gamma$ | 5.37      | 6.35      | 5.86       | 0.49        |
| $eta\gamma$        | 7.47      | 8.75      | 8.11       | 0.64        |
| $\gamma$           | 8.39      | 8.14      | 8.27       | 0.13        |
| $\beta$            | 8.93      | 10.14     | 9.54       | 0.61        |
| $lpha lpha \gamma$ | 9.96      | 10.27     | 10.12      | 0.16        |
| $\alpha$           | 10.72     | 10.56     | 10.64      | 0.08        |
| $\gamma\gamma$     | 10.76     | 11.40     | 11.08      | 0.32        |
| lphaeta            | 14.87     | 14.40     | 14.64      | 0.24        |
| $eta\gamma\gamma$  | 14.58     | 15.73     | 15.16      | 0.58        |
| $\alpha \alpha$    | 18.31     | 17.60     | 17.96      | 0.36        |
| no contacts        | 18.72     | 16.37     | 17.55      | 1.18        |
| $lphaeta\gamma$    | 19.55     | 20.02     | 19.79      | 0.24        |
| $\beta\beta$       | 24.50     | 24.99     | 24.75      | 0.25        |
| lphaetaeta         | 28.68     | 32.21     | 30.45      | 1.77        |
| $etaeta\gamma$     | 33.91     | 33.26     | 33.59      | 0.33        |
| lpha lpha eta      | 36.42     | 38.67     | 37.55      | 1.13        |

# S2. Simulations details

| Total number of atoms | 2258             |
|-----------------------|------------------|
| ATP                   | 1                |
| $Na^+$                | 4                |
| $H_2O$                | 737              |
| Ensemble              | NPT              |
| Temperature           | $300 \mathrm{K}$ |
| Pressure              | $1 \mathrm{atm}$ |
| Timestep              | 1  fs            |
| Length                | 100  ns          |
|                       |                  |

Table 2: Settings of standard MD simulation of ATP in water.

Table 3: Settings of standard MD simulation of  $[ZnCH_3TACN]^{2+}$  in water.

| Total number of atoms | 4872             |
|-----------------------|------------------|
| $[ZnCH_3TACN]^{2+}$   | 1                |
| Cl <sup>-</sup>       | 2                |
| $H_2O$                | 1614             |
| Ensemble              | NPT              |
| Temperature           | $300 \mathrm{K}$ |
| Pressure              | $1 \mathrm{atm}$ |
| Timestep              | $1 \mathrm{fs}$  |
| Length                | 160 ns           |
|                       |                  |

| Equilibration                                                  |                                      |
|----------------------------------------------------------------|--------------------------------------|
| Ensemble                                                       | NPT                                  |
| Temperature                                                    | $300 \mathrm{K}$                     |
| Pressure                                                       | $1 \mathrm{atm}$                     |
| Timestep                                                       | 1  fs                                |
| Length                                                         | 20  ns                               |
| WT-MTD                                                         |                                      |
| Ensemble                                                       | NVT                                  |
| Temperature                                                    | $300 \mathrm{K}$                     |
| Pressure                                                       | $1 \mathrm{atm}$                     |
| Timestep                                                       | 1 fs                                 |
| Hill width                                                     | 2.0                                  |
| Initial hill height                                            | $0.2 \ \mathrm{kcal/mol}$            |
| Grid width                                                     | 0.1                                  |
| Bias factor                                                    | 15                                   |
| Hill deposition frequency                                      | 500  fs                              |
| Parameters of coordination number (c.n) function               |                                      |
| (for the definition of the function see Equation 1             |                                      |
| of the main text)                                              |                                      |
| Cutoff $d_0$                                                   | 2.7 Å                                |
| n                                                              | 6                                    |
| m                                                              | 12                                   |
| Half-harmonic wall on c.n.s                                    |                                      |
| Upper walls position                                           | 2.4                                  |
| Rescaled force constant                                        | $15 \ \rm kcal/mol$                  |
| Half-harmonic wall on distance between Zn <sup>2+</sup>        |                                      |
| and the center of mass of phosphorus                           |                                      |
| Upper walls position                                           | 10.2 Å                               |
| Rescaled force constant                                        | $15 \ \rm kcal/mol$                  |
| Harmonic constraints on [ZnCH <sub>3</sub> TACN] <sup>2+</sup> |                                      |
| Secondary N-Zn equilibrium distance                            | 2.05 Å                               |
| Tertiary N-Zn equilibrium distance                             | 2.15 Å                               |
| Force constant                                                 | $200 \text{ kcal/mol } \text{\AA}^2$ |

Table 4: General settings for WT-MTD simulations.

Table 5: Settings of WT-MTD simulation of  $ATP-Zn^{2+}$  in water.

| Total number of atoms | 997                   |
|-----------------------|-----------------------|
| ATP                   | 1                     |
| $\mathrm{Zn}^{2+}$    | 1                     |
| $Na^+$                | 2                     |
| $H_2O$                | 317                   |
| Box size              | $(21.40 \text{ Å})^3$ |
| Length                | $1.4 \ \mu s$         |
|                       |                       |

| Total number of atoms | 386                   |
|-----------------------|-----------------------|
| MTP                   | 1                     |
| $Zn^{2+}$             | 1                     |
| Na <sup>+</sup>       | 2                     |
| $H_2O$                | 122                   |
| Box size              | $(15.68 \text{ Å})^3$ |
| Length                | $1.4 \ \mu s$         |

Table 6: Settings of WT-MTD simulation of MTP- $Zn^{2+}$  in water.

Table 7: Settings of WT-MTD simulation of  $ATP-[ZnCH_3TACN]^{2+}$  in water.

| Total number of atoms | 1405                  |
|-----------------------|-----------------------|
| ATP                   | 1                     |
| $[ZnCH_3TACN]^{2+}$   | 1                     |
| $Na^+$                | 2                     |
| $H_2O$                | 444                   |
| Box size              | $(24.16 \text{ Å})^3$ |
| Length                | $2.2~\mu { m s}$      |
|                       |                       |

Table 8: Settings of WT-MTD simulations of MTP-[ZnCH<sub>3</sub>TACN]<sup>2+</sup> in water, either from ion-contact or from water-mediated initial configuration.

| Total number of atoms | 383                   |
|-----------------------|-----------------------|
| MTP                   | 1                     |
| $[Zn CH_3 TACN]^{2+}$ | 1                     |
| $Na^+$                | 2                     |
| $H_2O$                | 112                   |
| Box size              | $(15.55 \text{ Å})^3$ |
| Length                | $1.7 \ \mu s$         |
|                       |                       |

# S3. Characterization of $[ZnCH_3TACN]^{2+}$



Figure 1: Structure of  $[ZnCH_3TACN]^{2+}$  with coordinated water molecules, as obtained from standard MD simulation.

Table 9: Zn-N and Zn-Ow distances in  $[ZnCH_3TACN]^{2+}$  from standard MD simulation. Ow indicates water oxygens and NS, NT refer to secondary and tertiary nitrogens of TACN, respectively.

| Atoms       | Distance (Å)  |
|-------------|---------------|
| Zn-NS       | $2.09\pm0.06$ |
| Zn-NT       | $2.16\pm0.07$ |
| Zn-Ow (I)   | $2.05\pm0.06$ |
| Zn-Ow (II)  | $2.05\pm0.05$ |
| Zn-Ow (III) | $2.05\pm0.06$ |

S4. Conformational analysis



Figure 2: Free energy as a function of the dihedrals a)  $\omega_2/\omega_1$ , b)  $\omega_4/\omega_3$  and c)  $\omega_5$  of the triphosphate chain (definition of angles in Fig. 5 of the main text), obtained by reweighting of WT-MTD run for the  $\alpha\gamma\gamma$  coordination mode of ATP-Zn<sup>2+</sup> in water.



Figure 3: Free energy profiles as a function of the dihedral angles a)  $\omega_1$ , b)  $\omega_2$ , c)  $\omega_3$ , d)  $\omega_4$ , e)  $\omega_5$  of the triphosphate chain (definition of angles in Fig. 5 of the main text), obtained for free ATP in water (black dashed) by standard MD simulations and for  $\alpha\gamma$  (red solid),  $\alpha\gamma\gamma$  (blue solid) and  $\beta\gamma$  (green solid) coordination modes of ATP-Zn<sup>2+</sup> in water by reweighting of WT-MTD run.



Figure 4: Free energy as a function of the dihedrals a-c)  $\omega_2/\omega_1$ , d-f)  $\omega_4/\omega_3$  and g)  $\omega_5$  of the triphosphate chain (definition of angles in Fig. 5 of the main text), obtained by reweighting of WT-MTD run for the  $\alpha\gamma$ ,  $\alpha\gamma\gamma$  and  $\beta\gamma$  coordination modes of MTP-Zn<sup>2+</sup> in water.



Figure 5: a) Structure of a denosine, highlighting the position of the N7 and the H8 atoms and the gly cosidic angle,  $\chi$ . FES as a function of  $\chi$  and of the Zn-N7 distance, for the b)  $\alpha\gamma$ , c)  $\alpha\gamma\gamma$ , d)  $\beta\gamma$  binding modes of ATP-Zn<sup>2+</sup>, reconstructed from WT-MTD run.

S5. Free energy surfaces as a function of coordination numbers  $\mathbf{MTP}\text{-}\mathbf{Zn}^{2+}$ 



Figure 6: FESs from WT-MTD simulations of MTP-Zn<sup>2+</sup> in water. States with two Zn-O $\beta$  contacts are disregarded as higher in energy. a-f) Representative configurations for minima lying within ~10 kcal/mol from the global minimum.

### ATP-[ZnCH<sub>3</sub>TACN]<sup>2+</sup>



Figure 7: FESs from WT-MTD simulation of ATP-[ZnCH<sub>3</sub>TACN]<sup>2+</sup> in water. States with two Zn-O $\beta$  contacts are disregarded as higher in energy. a-g) Representative configurations for minima lying within ~10 kcal/mol from the global minimum.

## MTP-[ZnCH<sub>3</sub>TACN]<sup>2+</sup>



Figure 8: Average FESs from WT-MTD simulations of MTP-[ZnCH<sub>3</sub>TACN]<sup>2+</sup> in water starting from ion-contact and from water-mediated coordination. States with two Zn-O $\beta$  contacts are disregarded as higher in energy. a-f) Representative configurations for minima lying within ~10 kcal/mol from the global minimum.

#### S6. Convergence assessment



Figure 9: Time evolution of the free energy along WT-MTD trajectories, for a,b) ATP- $Zn^{2+}$ , c,d) MTP- $Zn^{2+}$ , e,f)ATP-[ZnCH<sub>3</sub>TACN]<sup>2+</sup>, MTP-[ZnCH<sub>3</sub>TACN]<sup>2+</sup> in water, starting from g,h) ion contact and from i,j) water-mediated coordination. For each system the global minimum is taken as a reference. On the left all coordination modes are shown, whereas on the right only the modes lower in energy than the unbound state are retained.

### S7. $Zn^{2+}$ -ATP WT-MTD simulation with $Zn^{2+}$ dummy model

Table 10: Settings of WT-MTD simulation of ATP-Zn<sup>2+</sup> in water with the dummy model by Duarte *et al.*.

| Total number of atoms | 997                   |
|-----------------------|-----------------------|
| ATP                   | 1                     |
| $\mathrm{Zn}^{2+}$    | 1                     |
| Dummies               | 6                     |
| $Na^+$                | 2                     |
| $H_2O$                | 315                   |
| Box size              | $(21.19 \text{ Å})^3$ |
| Length                | $1.1 \ \mu s$         |

The settings of the WT-MTD simulation are the same reported in Tab.4.



Figure 10: Time evolution of the free energy along WT-MTD trajectories, for  $ATP-Zn^{2+}$  with the dummy model by Duarte *et al.* starting from water-mediated coordination. The global minimum is taken as a reference. In the upper panel all coordination modes are shown, whereas in the lower panel only the modes lower in energy than the unbound state are retained.



Figure 11: a) Structure of a denosine, highlighting the position of the N7 and the H8 atoms and the gly cosidic angle,  $\chi$ . FES as a function of  $\chi$  and of the Zn-N7 distance, for the b)  $\alpha\gamma$ , c)  $\alpha\gamma\gamma$ , d)  $\beta\gamma$  binding modes of ATP-Zn<sup>2+</sup>, reconstructed from WT-MTD run with the dummy model by Duarte *et al.*.



Figure 12: Comparison of free energy as a function of the dihedrals  $\omega_2/\omega_1$ ,  $\omega_4/\omega_3$  of the triphosphate chain (definition of angles in Fig. 5 of the main text), obtained by reweighting of WT-MTD run for the  $\alpha\gamma$  coordination modes of ATP-Zn<sup>2+</sup> in water for the dummy model by Duarte *et al.* (a-b) and for the non-bonded model by Stote and Karplus (c-d).



Figure 13: Comparison of free energy as a function of the dihedrals  $\omega_2/\omega_1$ ,  $\omega_4/\omega_3$  of the triphosphate chain (definition of angles in Fig. 5 of the main text), obtained by reweighting of WT-MTD run for the  $\alpha\gamma\gamma$  coordination modes of ATP-Zn<sup>2+</sup> in water for the dummy model by Duarte *et al.* (a-b) and for the non-bonded model by Stote and Karplus (c-d).



Figure 14: Comparison of free energy as a function of the dihedrals  $\omega_2/\omega_1$ ,  $\omega_4/\omega_3$  of the triphosphate chain (definition of angles in Fig. 5 of the main text), obtained by reweighting of WT-MTD run for the  $\beta\gamma$  coordination modes of ATP-Zn<sup>2+</sup> in water for the dummy model by Duarte *et al.* (a-b) and for the non-bonded model by Stote and Karplus (c-d).



Figure 15: Comparison of free energy as a function of the dihedral  $\omega_5$  of the triphosphate chain (definition of the angle in Fig. 5 of the main text), obtained by reweighting of WT-MTD run for the  $\alpha\gamma$ ,  $\alpha\gamma\gamma$  and for  $\beta\gamma$  coordination modes of ATP-Zn<sup>2+</sup> in water for the dummy model by Duarte *et al.* (Dummy) and for the non-bonded model by Stote and Karplus (SK).



Figure 16: FES of ATP- $Zn^{2+}$  as a function of c.n. of  $Zn^{2+}$  to water and triphosphate oxygens, reconstructed from WT-MTD run using a) the model by Duarte *et al.* and b) the model by Stote and Karplus for the metal.