## **Supporting Information**

## In-Situ Surface Regulation of 3D Perovskite Using Diethylammonium

## Iodide for High-efficient Perovskite Solar Cells

Xiaopeng Yue<sup>1,2‡</sup>, Yingying Yang<sup>1‡</sup>, Xing Zhao<sup>1</sup>, Bingbing Fan<sup>1</sup>, Huilin Yan<sup>1</sup>, Shujie Qu<sup>1</sup>, Qiang Zhang<sup>1</sup>, Zhineng Lan<sup>1</sup>, Shuxian Du<sup>1</sup>, Hao Huang<sup>1</sup>, Luyao Yan<sup>1</sup>, Xinxin Wang<sup>1</sup>, Peng Cui<sup>1</sup>, Junfeng Ma<sup>1</sup>, Meicheng Li<sup>1</sup>\*

<sup>1</sup>State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China

<sup>2</sup>School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China

\*Corresponding authors:

E-mails: mcli@ncepu.edu.cn (Meicheng Li)

## **Experimental details**

**Materials.** Diethylammonium iodide (DAI) was purchased from Tokyo Chemical Industry (TCI). PbI<sub>2</sub> was purchased from Thermo scientific. Titanium tetrachloride (TiCl<sub>4</sub>,) was purchased from Aladdin. Formamidinium iodide (CH(NH<sub>2</sub>)<sub>2</sub>)I, FAI), cesium iodide (CsI), methylammonium chloride (CH<sub>3</sub>NH<sub>3</sub>Cl, MACl), 4-tert-butylpyridine (tBP), li-bis(trifluoromethanesulfonyl)imid (LI-TFSI) and 2,2',7,7'-Tetrakis[N,N-di(4-methoxy phenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD) were purchased from Xi'an Polymer Light Technology Corporation. N, N dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and chlorobenzene (CB) were purchased from Acros. Isopropanol (IPA) and acetonitrile (ACN) were purchased from Sigma-Aldrich. All chemicals were used without further purification. FTO glass ( $12 \times 18$  mm,  $8 \Omega \cdot sq^{-1}$ ) was purchased from Youxuan New Energy Technology Co. LTD (Yingkou, China). Anhydrous ether was purchased from Tianjin Jindongtianzheng Precision Chemical Reagent Factory.

**Solution Preparation.** TiO<sub>2</sub> precursor solution was prepared by diluting 3 mL TiCl<sub>4</sub> precursor with 150 mL deionized water. The perovskite precursor solution was prepared by dissolving PbI<sub>2</sub> (0.7420 g), FAI (0.2244 g), MACl (0.0101 g) and CsI (0.0198 g) in 1 mL DMF and DMSO (v:v=4:1). DAI was dissolved in IPA with varied weight concentrations. The spiro-OMeTAD solution was prepared by mixing 72.3 mg spiro-OMeTAD, 27  $\mu$ L 4-tBP and 17.5  $\mu$ L Li-TFSI solution (520 mg·mL<sup>-1</sup>, in ACN) in 1 mL CB.

**Device Fabrication.** All devices were deposited on FTO glass substrates, which were cleaned sequentially in detergent, ethanol and water for 15 min and then dried with nitrogen. Transparent TiO<sub>2</sub> films were prepared as electron transport layer by chemical bath method that TiCl<sub>4</sub> precursor solution is water-bathed at 70 °C for 40 minutes. Then the as-prepared FTO/TiO<sub>2</sub> films were rinsed with water and blown with dry N<sub>2</sub> for later use. The perovskite precursor was spin-coated on FTO/TiO<sub>2</sub> in N<sub>2</sub> glove box at 4000 rpm for 18 s. At 5 s after the spin-coating, 900 µL ether was dropped onto the substrate to accelerate the crystallization process, followed by annealing at 110 °C for 60 min in air to promote the crystallization of perovskite. DAI/IPA with different concentrations were spin-coated at 4000 rpm for 30s, followed by annealing at 100 °C for 3 min. The spiro-OMeTAD solution was deposited by spin-coating at 4000 rpm for 30 s without further annealing. Metal electrode (70 nm Au) was deposited on the hole transporting layer using a thermal evaporator to accomplish the solar cell fabrication.

**Characterization.** FTIR spectra was measured by Bruker INVENIO. XPS spectra was characterized by Thermo Fisher Scientific ESCALAB 250Xi system equipped with Al K<sub>a</sub> radiation. The morphologies of perovskite films were investigated using HITACHI SU8010 at an accelerating voltage of 5 kV and atomic force microscopy (FMNanoview 1000). The XRD patterns of the prepared films were measured using a Rigaku Ultima IV X-ray diffractometer with Cu Ka1(1.54Å). UV-visible absorption spectra were measured using a Shimadzu UV-2600 spectrophotometer. Steady-state and the time-resolved photoluminescence were performed by a FLS980 fluorescence spectrometer (Edinburgh Instrument) equipped with a 450 W Xe lamp and a picosecond-pulsed diode 405 nm laser (EPL-405). The GIWAXS measurements were conducted by Rigaku MicroMax-007HF equipped with a DECTRIS PILATUS3 R detector under the incident angle of  $0.5^{\circ}$ .

The current density-voltage (*J-V*) characteristics were measured using a source meter (Keithley 2400) under AM 1.5G irradiation with a power density of 100 mW  $\cdot$  cm<sup>-2</sup> from a solar simulator (XES-301S + EL-100). The light intensity was calibrated with a standard silicon cell (the KG-5 reference cell). The external quantum efficiency (EQE) was measured using QE-R systems (Enli Tech. Hsinchu Taiwan China) under AC mode, the light intensity was adjusted by the standard single-crystal Si photovoltaic cells before the measurement. The electrochemical impedance spectroscopy (EIS) of PSCs were analyzed using a Zahner-Zennium electrochemical workstation.



Figure S1. Molecular structure of DAI.



**Figure S2.** Top-view SEM images of perovskite films without and with different concentrations DAI treatment. a) Control; b) 5 mg·mL<sup>-1</sup>; c) 8 mg·mL<sup>-1</sup>; d) 10 mg·mL<sup>-1</sup>; e) 15 mg·mL<sup>-1</sup>; and f) 20 mg·mL<sup>-1</sup>. Scale bars represent 1 $\mu$ m.



**Figure S3**. Statistical distributions of a) PCE; b)  $V_{oc}$ ; c) FF; and d)  $J_{sc}$  of devices with different concentrations DAI treatment.



Figure S4. J-V curves of the best device for different concentration DAI treatment.



Figure S5. AFM height images (5  $\times$  5  $\mu$ m) of the a) control and b) DAI treated perovskite films.



Figure S6. FTIR-ATR spectra of control and DAI-treated perovskite films.



Figure S7. (a) the survey XPS spectra and (b) High-resolution XPS spectra of I 3d.

**Table S1:** Lifetime parameters of perovskite films treated with and without DAI, achieved by fitting the TRPL curves according to the biexponential equation, where the average lifetime  $\tau_{average}$  are calculated according to the formula of  $\tau_{average} = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)$ .

|         | A <sub>1</sub> | τ1 (μs) | <b>A</b> <sub>2</sub> | τ2 (μs) | τ <sub>average</sub> (μs) |
|---------|----------------|---------|-----------------------|---------|---------------------------|
| Control | 0.14           | 0.23    | 0.84                  | 1.64    | 1.61                      |
| DAI     | 0.09           | 0.27    | 0.89                  | 1.77    | 1.75                      |

Table S2: EIS parameters of the PSCs with and without DAI treatment.

|         | $R_{s}(\Omega)$ | CPE-T                 | CPE-P | $R_{rec} (\Omega)$ |
|---------|-----------------|-----------------------|-------|--------------------|
| Control | 19.24           | 6.38×10 <sup>-8</sup> | 1.06  | 208                |
| DAI     | 18.22           | 3.35×10 <sup>-8</sup> | 0.96  | 772                |