Quasi-classical trajectory study of the OH⁻ + CH₃I reaction: Theory meets experiment

Domonkos A. Tasi^{1*}, Tim Michaelsen², Roland Wester² and Gábor Czakó^{1*}

¹Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary ²Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria

* dtasi@chem.u-szeged.hu (D. A. T.) and gczako@chem.u-szeged.hu (G. C.)

Reaction channels ^a	E _{coll} (kcal/mol)			
	11.5	23.1	34.6	46.1
S _N 2	78.97	23.33	13.10	10.36
ABS	169.84	59.31	32.81	22.20
ABS soft	100.04	40.06	23.69	16.46
ABS hard	23.94	14.81	10.45	8.02
Iodine ABS	0.04	0.03	0.02	0.02
S _N 2 retention	0.07	0.02	0.02	0.07
ABS proton exch.	0.77	0.10	0.03	0.01
S _N 2 proton exch.	1.19	0.14	0.02	0.01
Proton exch.	0.36	0.07	0.02	0.00
ABS dissociation ^b	0.00	0.29	1.25	2.26
$CH_2+I^-+H_2O$	0.00	0.12	0.67	1.45
$H_2O + [I \cdots CH_2]^-$	0.00	0.08	0.31	0.52
$CH_2 + [I \cdots H_2 O]^-$	0.00	0.06	0.21	0.24
$I^- + [CH_2 \cdots H_2O]$	0.00	0.04	0.06	0.04

Table S1. Integral cross sections (bohr²) of the possible pathways for the $OH^- + CH_3I$ reaction at different collision energies.

^{*a*} $ICS_{total} = ICS_{Sv2} + ICS_{Proton abs.} + ICS_{Iodine abs.} + ICS_{Proton abs. diss.} + ICS_{Proton exch.}$

^b ICS_{Proton abs. diss.} = ICS(CH₂ + I⁻ + H₂O) + ICS(H₂O + [I···CH₂]⁻) + ICS(CH₂ + [I···H₂O]⁻) + ICS(I⁻ + [CH₂···H₂O])

Figure S1. The structures of the stationary points for the S_N2 and proton-abstraction pathways of the OH⁻ + CH₃I reaction showing the most important bond lengths (Å) and angles (deg) obtained on the PES compared to the CCSD(T)-F12b/aug-cc-pVTZ values. For the S_N2 channel, the *ab initio* data are adapted from ref. 1. Regarding the PES development, a detailed description is provided in ref 2.

Figure S2. Opacity functions of the $S_N 2$ and proton-abstraction pathways of the $OH^- + CH_3I$ reaction at different collision energies.

References

- 1. D. A. Tasi, Z. Fábián and G. Czakó, J. Phys. Chem. A, 2018, 122, 5773.
- 2. D. A. Tasi, T. Győri and G. Czakó, Phys. Chem. Chem. Phys., 2020, 22, 3775.