Supporting Information

Superconducting H7 chain in gallium hydrides at high pressure

Meixu Liu,¹ Wenwen Cui,^{1, *} Jingming Shi,¹ Jian Hao and Yinwei Li^{1,†} ¹ Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

Corresponding to: wenwencui@jsnu.edu.cn & yinwei_li@jsnu.edu.cn

FIG. S1. Relative enthalpies of GaH_7 (a) and GaH_3 (c) with and without inclusion of ZPE as a function of pressure. (b) and (d) are the relative ZPE of GaH_7 and GaH_3 as a function of pressure, respectively.

FIG. S2 bond length of Ga-H system at different pressures.

FIG. S3 The calculated crystalline orbital Hamiltonian population (COHP) and integrated crystalline orbital Hamiltonian population (ICOHP)of GaH₇ for three different H-H distances in H₇ chain at 200 GPa (a) and 400 GPa (b).

FIG. S4 The Fermi surfaces of GaH₇ associated with the four bands that contribute significantly to the electronic band structure at 300 GPa.

FIG. S5 The Fermi surfaces of GaH₇ associated with the four bands that contribute significantly to the electronic band structure at 200 GPa.

FIG. S6. The band structure and the density of states (DOS) of GaH7 at 300GPa.

FIG. S7. The band structure and the density of states (DOS) of GaH₇ at 200GPa.

FIG. S8 The calculated crystalline orbital Hamiltonian population (COHP) and integrated crystalline orbital Hamiltonian population (ICOHP) of GaH₇ for the shortest Ga-H distances in GaH₇ at 300 GPa

FIG. S9. Calculated anisotropic superconducting gap of GaH_7 at 200 GPa, 300 GPa and 400 GPa.

FIG. S10. Electronic band structure and projected density of states (PDOS), phonondispersion curves, PHDOS, Eliashberg spectral function $\alpha^2 F(\omega)$ and the EPC parameter λ of GaH₇ at 400 GPa.

Pressure (GPa)	Atoms	Charge (e)
200	H1	-0.22
	H2	-0.15
	H3	-0.10
	H4	-0.12
	Ga	+1.06
300	H1	-0.24
	H2	-0.15
	Н3	-0.10
	H4	-0.13
	Ga	+1.12
400	H1	-0.25
	H2	-0.15
	H3	-0.11
	H4	-0.13
	Ga	+1.16

Table. S1. Charge transfer of Ga and H of C222₁ GaH₇ in one unit cell at different pressures. The negative and positive sign indicate electron gain and loss, respectively.

Table. S2. Structural information of GaH₇.

Space group	Lattice parameter (Å, °)	atomic coordinate	x	у	Z	sites
C2221	a=5.460	H1	-0.077	0.699	1.123	8 <i>c</i>
	<i>b</i> = 3.142	H2	-0.209	0.524	1.180	8c
(300 GPa)	<i>c</i> = 4.193	H3	-0.212	0.771	1.435	8c
	α=β=γ=90	H4	0.174	0.500	1.000	4a
		Ga	0.000	0.835	0.750	4b

Table. S3. The calculated electron-phonon coupling parameter (λ), logarithmic average phonon frequency (ω_{log}), and the estimated T_c for GaH₇ using the Allen-Dynes modified McMillan (ADM) equation, and numerically solving the Eliashberg equations with $\mu^* = 0.1$.

			$T_{c}\left(\mathrm{K} ight)$		
Pressure (GPa)	λ	$\omega_{\log}(K)$	ADM	Eliashberg	
200	1.35	902	93	118	
300	1.01	1291	91	104	
400	0.89	1431	82	93	