Supporting Information

Mg(I)-Fe(-II) and Mg(0)-Mg(I) Covalent Bonding in the $Mg_nFe(CO)_4^-$ (n = 1, 2) Anion

Complexes: An Infrared Photodissociation Spectroscopic and Theoretical Study

Xiaoyang Jin, Guanjun Wang, Mingfei Zhou*

Collaborative Innovation Center of Chemistry for Energy Materials, Department of

Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,

Fudan University Shanghai 200438 (China). E-mail: mfzhou@fudan.edu.cn

Figure S1. The experimental mass spectra of $MgFe(CO)_4^-$ and $Mg_2Fe(CO)_4^-$ and the corresponding simulated mass spectra based on natural isotope abundances of the elements. The number of Mg atoms can be confirmed according to the isotopic splitting.

Figure S2. The experimental IR spectra of $MgFe(CO)_4^-$ and $MgFe(CO)_5^-$ and the simulated IR spectra of the two lowest-lying isomers (as shown in Table S1) of $MgFe(CO)_4^-$ at the B3LYP/aug-cc-pVTZ level. The predicted IR spectra were obtained from scaled harmonic vibrational frequencies for the two isomers of $MgFe(CO)_4^-$ by applying Lorentzian line shape function with 4 cm⁻¹ full-width-at-half-maximum.

Figure S3. The experimental IR spectrum and the simulated IR spectra of the three lowest-lying isomers (as shown in Table S2) of $Mg_2Fe(CO)_4^-$ at the B3LYP/aug-cc-pVTZ level. The predicted IR spectra were obtained from scaled harmonic vibrational frequencies for the three isomers of $Mg_2Fe(CO)_4^-$ by applying Lorentzian line shape function with 4 cm⁻¹ full-width-at-half-maximum.

Figure S4. Optimized equilibrium geometries and relative energies (kcal·mol⁻¹) of different isomers of $MgFe(CO)_5^-$ in the doublet spin state at the B3LYP/aug-cc-pVTZ level of theory. Color codes for atoms: red, O; gray, C; purple, Fe; green, Mg.

Figure S5. The contours of the frontier Kohn-Sham canonical valence MOs of the ${}^{2}A_{1}$ -Fe(CO)₄⁻ at the B3LYP/aug-cc-pVTZ level (isosurface = 0.03 au.). Color codes for atoms: red, O; gray, C; purple, Fe.

Table S1. Calculated geometries and relative energies (kcal·mol⁻¹) of different isomers of MgFe(CO)₄⁻ in the doublet spin state at the B3LYP/aug-cc-pVTZ level of theory. Color codes for atoms: red, O; gray, C; purple, Fe; green, Mg.

Table S2. Calculated geometries and relative energies (kcal·mol⁻¹) of different isomers of $Mg_2Fe(CO)_4^-$ in the doublet spin state at the B3LYP/aug-cc-pVTZ level of theory. Color codes for atoms: red, O; gray, C; purple, Fe; green, Mg.

Table S3. Calculated bond dissociation energies D_0 (kcal·mol⁻¹) of MgFe(CO)₄⁻, MgFe(CO)₅⁻ and Mg₂Fe(CO)₄⁻ for the loss of one magnesium atom or one carbon monoxide (the axial CO for MgFe(CO)₄⁻ and Mg₂Fe(CO)₄⁻ and the tagging CO for MgFe(CO)₅⁻) at the B3LYP/aug-cc-pVTZ level of theory.

	<i>D</i> ₀ (-Mg)	<i>D</i> ₀ (-CO)
MgFe(CO) ₄ -	18.3	40.9
MgFe(CO)₅⁻	18.2	0.7
Mg ₂ Fe(CO) ₄ -	2.5	39.9

Atom Spin density Hirshfeld VDD AIM NP Mg 0.55 0.04 0.04 0.52 0.4 Fe 0.42 -0.20 -0.21 0.36 -2.3 C 0.00 0.00 0.01 0.73 0.7	A 7 8
Mg 0.55 0.04 0.04 0.52 0.4 Fe 0.42 -0.20 -0.21 0.36 -2.3 C 0.00 0.00 0.01 0.73 0.7	7 8
Fe 0.42 -0.20 -0.21 0.36 -2.3 C 0.00 0.00 0.01 0.73 0.7	8
C 0.00 0.00 0.01 0.73 0.7	-
	6
C 0.00 0.00 0.01 0.73 0.7	6
C 0.00 0.00 0.01 0.73 0.7	6
O 0.00 -0.22 -0.23 -1.24 -0.5	7
O 0.00 -0.22 -0.23 -1.24 -0.5	7
O 0.00 -0.22 -0.23 -1.24 -0.5	7
C 0.07 0.04 0.06 0.89 0.8	7
0 -0.02 -0.20 -0.22 -1.23 -0.5	5

Table S4. Charge analyses of ${}^{2}A_{1}$ -MgFe(CO)₄⁻ with Hirshfeld, VDD, QTAIM and NPA at the B3LYP/aug-cc-pVTZ level.

Atom	Spin density	Hirshfeld	VDD	AIM	NPA
Mg11 ^[a]	0.31	-0.17	-0.17	-0.11	-0.02
Mg8 ^[a]	0.22	0.22	0.22	0.69	0.49
Fe	0.48	-0.20	-0.22	0.32	-2.41
С	-0.01	-0.01	0.01	0.71	0.77
С	-0.01	-0.01	0.00	0.72	0.77
С	-0.01	-0.01	0.00	0.72	0.77
0	0.00	-0.22	-0.23	-1.24	-0.56
0	0.00	-0.22	-0.23	-1.24	-0.56
0	0.00	-0.22	-0.23	-1.24	-0.56
С	0.05	0.04	0.06	0.88	0.88
0	-0.02	-0.20	-0.22	-1.21	-0.55

Table S5. Charge analyses of ${}^{2}A_{1}$ -Mg₂Fe(CO)₄⁻ with Hirshfeld, VDD, QTAIM and NPA at the B3LYP/aug-cc-pVTZ level.

[a] The number is referred to the atom label in Figure 3.

		Mg		Fe			CO
		3s	Зр	4s	3d	4p	2s2p
SOMO 11a ₁	α	45.9	19.0	0.7	13.7	6.9	11.4
HOMO 9e1	α		1.3		48.7	12.7	35.1
	β		1.2		48.0	12.6	36.0
HOMO-1 10a ₁	α	34.7	0.1	0.3	24.4	14.1	23.2
	β	33.9	0.1	0.5	24.6	14.9	23.7
HOMO-2 8e1	α				80.2		19.1
	β				79.1		20.2

Table S6. AO contributions (in %) in Kohn-Sham MOs of ${}^{2}A_{1}$ -MgFe(CO)₄⁻ at the B3LYP/aug-cc-pVTZ level of theory.

		Mg	8 ^[a]	Mg	11 ^[a]		Fe		CO
		3s	Зр	3s	Зр	4s	3d	4p	2s2p
SOMO 12a ₁	α	26.8	12.3	15.8	23.6	0.3	8.1	4.3	6.3
HOMO 9e1	α		1.8				48.1	12.5	35.5
	β		1.7				47.7	12.5	36.0
HOMO-1 11a ₁	α	4.8	1.5	31.3	0.9	0.5	24.1	13.7	21.2
	β	5.2	2.8	31.6		0.5	23.3	13.6	20.9
HOMO-2 8e ₁	α						79.7		19.6
	β		0.1				79.0		20.3
HOMO-3 10a ₁	α	30.6	6.4	46.9	0.6		4.9	2.7	6.0
	β	27.7	5.1	48.4	1.1		5.8	3.4	6.7

Table S7. AO contributions (in %) in Kohn-Sham MOs of ${}^{2}A_{1}$ -Mg₂Fe(CO)₄⁻ at the B3LYP/aug-cc-pVTZ level of theory.

[a] The number is referred to the atom label in Figure 3.

Table S8. The deformation densities $\Delta\rho$ (red \rightarrow blue, isosurface = 0.001 au.) of ²A₁-MgFe(CO)₄⁻ using Mg in the ³P (3s¹3p¹) excited state and Fe(CO)₄⁻ in the ²A₁ ground state as interaction fragments based on the EDA-NOCV analysis at the PBE/TZ2P level. Energy values are given in kcal·mol⁻¹. The value in parentheses gives the percentage contribution to the total orbital interactions ΔE_{orb} .

Fragment		Mg: 3s ¹ 3p ¹ Fe(CO) ₄ ⁻ : ² A ₁	
	α	β	α+β
$\Delta E_{ m orb}(\sigma)$	AF = 76.2		
	$\Delta E_{\sigma\alpha} = -76.3$ $ v_{\sigma\alpha} = 0.75$	$\Delta E_{\sigma\beta} = -15.1$ $ v_{\sigma\beta} = 0.47$	$\Delta E_{\sigma} = -91.4 (88.9\%)$ $ v_{\sigma} = 0.28$
ΔE _{orb(π1)}	Δ <i>E</i> _{π1α} = -2.3 <i>ν</i> _{π1α} = 0.11	$ΔE_{π1β} = -1.8$ $ ν_{π1β} = 0.11$	Δ <i>E</i> _{π1} = -4.1 (4.0%) ν _{π1} = 0.22
ΔE _{orb(π2)}	$\Delta E_{\pi 2\alpha} = -2.3$ $ \mathbf{v}_{\pi 2\alpha} = 0.11$	$\Delta E_{\pi 2\beta} = -1.8$ $ \mathbf{v}_{\pi 2\beta} = 0.11$	$\Delta E_{\pi 2} = -4.1 (4.0\%)$ $ v_{\pi 2} = 0.22$
$\Delta E_{orb(rest)}$	-1.9	-1.3	-3.2 (3.1%)

Table S9. The deformation densities $\Delta\rho$ (red \rightarrow blue, isosurface = 0.001 au.) of ${}^{2}A_{1}$ -Mg₂Fe(CO)₄⁻ using Mg in the ${}^{3}P$ (3s¹3p¹) excited state and MgFe(CO)₄⁻ in the ${}^{2}A_{1}$ ground state as interaction fragments based on the EDA-NOCV analysis at the PBE/TZ2P level. Energy values are given in kcal·mol⁻¹. The value in parentheses gives the percentage contribution to the total orbital interactions ΔE_{orb} .

Fragment	Mg: 3s ¹ 3p ¹ MgFe(CO) ₄ ⁻ : ² A ₁						
	α	β	α+β				
$\Delta E_{ m orb}(\sigma)$	$\Delta E_{\sigma\alpha} = -15.9$ $ \mathbf{v}_{\sigma\alpha} = 0.53$	$\Delta E_{\alpha\beta} = -32.9$ $ \mathbf{v}_{\alpha\beta} = 0.70$	$ΔE_{\sigma} = -48.8 (95.3\%)$ v_{σ} = 0.17				
$\Delta E_{\text{orb(rest)}}$	-1.3	-1.1	-2.4 (4.7%)				