Supplementary Information

The role of halogen effects and cyclic imide groups in constructing red and near-infrared room temperature phosphorescence molecules: Theoretical perspective and molecular design

Qingfang Mu¹, Kai Zhang¹, Huanling Liu¹, Zhen Xie¹, Yuzhi Song¹, Chuan-Kui Wang¹, Lili Lin¹, Yuanyuan Xu²*, Jianzhong Fan^{1, 3}*

- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- 3. Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China.

Corresponding Author

*Author to whom correspondence should be addressed. E-mail: <u>fanjianzhongvip@163.com</u> and <u>15165131990@163.com</u>

Figure S1. PCM models of SI, DBMI, DIMI, DTSI, MTSI, 2MIP, and 2BMIP in tetrahydrofuran (THF).

Figure S2. Schematic representation of the adiabatic potential energy surfaces (PES) for excited states.

Figure S3. Geometry comparisons and RMSD values among S_0 (red), S_1 (blue) and T_1 (green) for DTSI (a), MTSI (b), 2MIP (c) and 2BMIP (d) in solid phase.

Figure S4. Geometry comparisons and RMSD values among S_0 (red), S_1 (blue) and T_1 (green) for SI (a), DBMI (b) and DIMI (c) in THF.

Figure S5. Geometry comparisons and RMSD values among S_0 (red), S_1 (blue) and T_1 (green) for DTSI (a), MTSI (b), 2MIP (c) and 2BMIP (d) in THF.

Figure S6. Intermolecular interactions for selected dimers of DTSI (a) and MTSI (b) described by IGMH method.

Figure S7. Intermolecular interactions for selected dimers of 2MIP (a) and 2BMIP (b) described by IGMH method.

Figure S9. Molecular planarity parameters for SI, DBMI and DIMI in THF.

Figure S10. Molecular planarity parameters for DTSI, MTSI, 2MIP and 2BMIP in THF.

Figure S11. The orbital transition information for SI of the S_0 , S_1 , and T_1 states in solid phase.

Figure S12. The orbital transition information for DBMI of the S_0 , S_1 , and T_1 states in solid phase.

Figure S13. The orbital transition information for DIMI of the S_0 , S_1 , and T_1 states in solid phase.

Figure S14. The orbital transition information for DTSI of the S_0 , S_1 , and T_1 states in solid phase.

Figure S15. The orbital transition information for MTSI of the S_0 , S_1 , and T_1 states in solid phase.

Figure S16. The orbital transition information for 2MIP of the S_0 , S_1 , and T_1 states in solid phase.

Figure S17. The orbital transition information for 2BMIP of the S_0 , S_1 , and T_1 states in solid phase.

Figure S18. The orbital transition information for SI of the S_0 , S_1 , and T_1 states in THF.

Figure S19. The orbital transition information for DBMI of the S_0 , S_1 , and T_1 states in THF.

DIMI

Figure S20. The orbital transition information for DIMI of the S_0 , S_1 , and T_1 states in THF.

Figure S21. The orbital transition information for DTSI of the S_0 , S_1 , and T_1 states in THF.

Figure S22. The orbital transition information for MTSI of the S_0 , S_1 , and T_1 states in THF.

Figure S23. The orbital transition information for 2MIP of the S_0 , S_1 , and T_1 states in THF.

Figure S24. The orbital transition information for 2BMIP of the S_0 , S_1 , and T_1 states in THF.

Figure S25. Composition (%) of atoms in frontier MOs of DTSI (a), MTSI (b), 2MIP (c) and 2BMIP (d) calculated by NAO method in solid phase.

Figure S26. Composition (%) of atoms in frontier MOs of SI (a), DBMI (b) and DIMI (c) calculated by NAO method in THF.

Figure S27. Composition (%) of atoms in frontier MOs of DTSI (a), MTSI (b), 2MIP (c) and 2BMIP (d) calculated by NAO method in THF.

Figure S28. Natural transition orbitals (NTOs) of the S₁ and T₁ states for DTSI, MTSI, 2MIP and 2BMIP in solid phase.

Figure S29. Natural transition orbitals (NTOs) of the S_1 and T_1 states for SI, DBMI and DIMI in THF.

Figure S30. Natural transition orbitals (NTOs) of the S₁ and T₁ states for DTSI, MTSI, 2MIP and 2BMIP in THF.

Figure S31. Adiabatic excitation energy diagrams for SI (a), DBMI (b) and DIMI (c) in the solid phase. Corresponding SOC constants are also listed.

Figure S32. Adiabatic excitation energy diagrams for DTSI (a), MTSI (b), 2MIP (c) and 2BMIP (d) in the solid phase. Corresponding SOC constants are also listed.

Figure S33. Adiabatic excitation energy diagrams for SI (a), DBMI (b) and DIMI (c) in THF. Corresponding SOC constants are also listed.

Figure S34. Adiabatic excitation energy diagrams for DTSI (a), MTSI (b), 2MIP (c) and 2BMIP (d) in THF. Corresponding SOC constants are also listed.

Figure S35. Odd electron density (OED) of the S₁ and T₁ states for DTSI, MTSI, 2MIP and 2BMIP in solid phase.

Figure S36. Odd electron density (OED) of the S_1 and T_1 states for SI, DBMI and DIMI in THF.

Figure S37. Odd electron density (OED) of the S₁ and T₁ states for DTSI, MTSI, 2MIP and 2BMIP in THF.

Figure S38. Calculated HR factors versus the normal mode frequencies for SI, DBMI and DIMI in solid phase, respectively. Representative vibration modes are shown as insets.

Figure S39. Calculated HR factors versus the normal mode frequencies for DTSI, MTSI, 2MIP and 2BMIP in solid phase, respectively. Representative vibration modes are shown as insets.

Figure S40. Calculated reorganization energies versus the normal mode frequencies for DTSI, MTSI, 2MIP and 2BMIP in solid phase, respectively. Representative vibration modes are shown as insets.

Figure S41. Calculated HR factors versus the normal mode frequencies for SI, DBMI and DIMI in THF, respectively. Representative vibration modes are shown as insets.

Figure S42. Calculated HR factors versus the normal mode frequencies for DTSI, MTSI, 2MIP and 2BMIP in THF, respectively. Representative vibration modes are shown as insets.

рвми разни разни

Figure S44. Calculated reorganization energies versus the normal mode frequencies for DTSI, MTSI, 2MIP and 2BMIP in THF, respectively. Representative vibration modes are shown as insets.

Figure S45. Contribution to the reorganization energy from bond length (purple), bond angle (blue) and dihedral angle (red) in solid phase for SI, DBMI and DIMI, respectively.

Figure S46. Contribution to the reorganization energy from bond length (purple), bond angle (blue) and dihedral angle (red) in solid phase for DTSI, MTSI, 2MIP and 2BMIP, respectively.

Figure S47. Contribution to the reorganization energy from bond length (purple), bond angle (blue) and dihedral angle (red) in THF for SI, DBMI and DIMI, respectively.

Figure S48. Contribution to the reorganization energy from bond length (purple), bond angle (blue) and dihedral angle (red) in THF for DTSI, MTSI, 2MIP and 2BMIP, respectively.

Figure S49. Electrostatic potential (ESP) maps of DTSI and MTSI in solid phase and THF.

Figure S50. Electrostatic potential (ESP) maps of 2MIP and 2BMIP in solid phase and THF.

		B3LYP	BMK	Cam-B3LYP	M062X	PBE0	WB97XD	Exp ^a
	SI	367.74	356.39	348.14	378.56	354.76	335.13	375 • 455
S_1	DBMI	445.75	384.91	388.25	374.36	424.57	394.92	455
	DIMI	452.59	404.84	400.72	392.10	435.94	407.27	480
	SI	470.93	457.92	456.12	463.99	427.67	447.66	535
T_1	DBMI	726.09	683.35	750.13	635.39	731.73	736.05	630、690
	DIMI	740.31	700.03	754.19	634.38	746.48	747.49	665 • 745

Table S1. Emission wavelengths (nm) of S_1 and T_1 calculated by different functionals for SI, DBMI and DIMI in solid phase.

^{*a*} Experimental data the photoinduced processes under UV irradiation.

	01 51.				
		Electrostatic	Repulsion	Dispersion	Total
	Dimer-1	-1.26	2.58	-7.37	-6.02 kJ/mol
	Dimer-2	-1.92	117.87	-32.30	83.66 kJ/mol
SI	Dimer-3	-4.51	7.37	-17.45	-14.60 kJ/mol
	Dimer-4	-2.20	5.12	-12.82	-9.90 kJ/mol
	Dimer-5	0.51	16.24	-25.19	-8.44 kJ/mol

Table S2. Intermolecular interaction energy analysis for selected dimers extracted from the crystal of SI.

Table S3. Intermolecular interaction energy analysis for selected dimers extracted from the crystal of DBMI.

the erystar o					
		Electrostatic	Repulsion	Dispersion	Total
	Dimer-1	-0.22	13.86	-29.03	-15.39 kJ/mol
	Dimer-2	-0.24	8.76	-12.70	-4.17 kJ/mol
DBMI	Dimer-3	-0.04	5.13	-12.92	-7.83 kJ/mol
	Dimer-4	-1.09	51.66	-18.03	32.55 kJ/mol
	Dimer-5	0.32	14.89	-30.66	-15.45 kJ/mol

Table S4. Intermolecular interaction energy analysis for selected dimers extracted from the crystal of DIMI.

		Electrostatic	Repulsion	Dispersion	Total
	Dimer-1	0.08	11.24	-16.15	-4.83 kJ/mol
	Dimer-2	-1.06	18.16	-11.69	5.41 kJ/mol
DIMI	Dimer-3	2.10	13.62	-32.22	-16.50 kJ/mol
	Dimer-4	-1.54	44.45	-18.66	24.25 kJ/mol
	Dimer-5	0.07	9.86	-25.96	-16.03 kJ/mol

Table S5. Intermolecular interaction energy analysis for selected dimers extracted from the crystal of DTSI.

		Electrostatic	Repulsion	Dispersion	Total
DTSI	Dimer-1	-1.80	2.66	-7.95	-7.09 kJ/mol

Dimer-2	-5.06	3.33	-12.43	-14.16 kJ/mol
Dimer-3	-3.13	20.99	-42.06	-24.21 kJ/mol
Dimer-4	-0.77	3.33	-8.69	-6.13 kJ/mol
Dimer-5	0.29	38.48	-30.21	8.56 kJ/mol

Table S6. Intermolecular interaction energy analysis for selected dimers extracted from the crystal of MTSI.

	/1 1/1 1 01.				
		Electrostatic	Repulsion	Dispersion	Total
	Dimer-1	-5.84	12.59	-26.22	-19.47 kJ/mol
	Dimer-2	-2.44	64.89	-20.46	41.99 kJ/mol
MTSI	Dimer-3	-4.81	13.75	-30.91	-21.97 kJ/mol
	Dimer-4	-2.90	1.79	-9.92	-11.03 kJ/mol
	Dimer-5	3.14	2.33	-8.83	-3.37 kJ/mol

Table S7. Intermolecular interaction energy analysis for selected dimers extracted from the crystal of 2MIP.

		Electrostatic	Repulsion	Dispersion	Total
	Dimer-1	-2.84	9.08	-23.32	-17.08 kJ/mol
	Dimer-2	-0.93	21.61	-36.47	-15.78 kJ/mol
2MIP	Dimer-3	-4.75	34.79	-69.00	-38.95 kJ/mol
	Dimer-4	-0.90	21.61	-36.47	-15.76 kJ/mol
	Dimer-5	-0.65	3.46	-12.01	-9.20 kJ/mol

Table S8. Intermolecular interaction energy analysis for selected dimers extracted from the crystal of 2BMIP.

		Electrostatic	Repulsion	Dispersion	Total
	Dimer-1	-6.18	9.51	-26.94	-23.61 kJ/mol
2BMIP	Dimer-2	1.76	18.28	-49.43	-29.38 kJ/mol
	Dimer-3	3.58	33.60	-54.94	-17.76 kJ/mol
	Dimer-4	-0.72	6.21	-14.79	-9.31 kJ/mol

	Dimer-5	-6.17	9.50	-26.92	-23.59 kJ/mol				
Table S9. M	Table S9. Mulliken charges for dimer-2 extracted from the crystal of SI.								
01	-().200976	013		-0.200931				
C2	0	.026596	C14		0.026417				
N3	0	.025064	N15		0.025165				
C4	0	.159889	C16		0.160584				
C5	0	.032085	H17		0.038249				
H6	0	.038216	C18		0.032465				
H7	-().012568	H19		-0.013003				
H8	-(0.015682	C20		0.157577				
С9	0	.157596	H21		-0.015643				
O10	-().183458	O22		-0.184179				
H11	-(0.012472	H23		-0.012434				
H12	-().014289	H24		-0.014266				
Table S10. N	/ulliken char	ges for dimer-	4 extracted from	m the crysta	l of DBMI.				
Br1	0.	067654	H11		0.041291				
C2	-0	.115253	N12		-0.032496				
C3	-0	.118026	C13		0.166436				
C4	0.	178083	C14		0.178595				
C5	0.	166571	015		-0.121318				

Table S11. Mulliken charges for dimer-2 extracted from the crystal of DIMI.

C16

017

C18

Br19

Br20

-0.117887

-0.142441

-0.114805

0.074741

0.067883

0.074873

-0.032291

-0.141643

-0.121276

0.041308

Br6

N7

08

09

H10

I1	0.159751	011	-0.121058
C2	-0.212702	C12	0.192760
C3	0.192978	N13	-0.039779
C4	-0.227230	C14	-0.227097
N5	-0.039630	C15	0.192829
O6	-0.142642	H16	0.041912
Ι7	0.155606	I17	0.155757
C8	0.192924	C18	-0.212860
H9	0.041969	O19	-0.142111
O10	-0.121023	I20	0.159647

	Table S12.	Mulliken	charges	for	dimer-4	extracted	from	the cr	vstal	of DIMI.
--	------------	----------	---------	-----	---------	-----------	------	--------	-------	----------

I1	0.159751	011	-0.143091
C2	-0.212702	C12	0.192967
C3	0.192978	N13	-0.039275
C4	-0.227230	C14	-0.212448
N5	-0.039630	H15	0.042314
O6	-0.142642	C16	0.192812
I7	0.155606	I17	0.159679
C8	0.192924	C18	-0.227363
Н9	0.041969	O19	-0.121373
O10	-0.121023	I20	0.155777

Table S13. Mulliken charges for dimer-5 extracted from the crystal of DTSI.							
H1	-0.014890	S13	-0.160432				
C2	0.229000	C14	-0.129501				
H3	-0.014890	N15	0.133894				
C4	-0.129792	C16	0.228555				
C5	0.233161	H17	0.020084				

H11	0.020081	H23	-0.015073	
C10	-0.118764	S22	-0.147017	
Н9	-0.015077	C21	0.233083	
H8	-0.015077	H20	-0.014899	
N7	0.133796	H19	-0.014899	
S 6	-0.160552	C18	-0.118723	

Table S14. Mulliken charges for dimer-2 extracted from the crystal of MTSI.

S1	-0.163523	013	-0.189856
C2	-0.115166	C14	0.023101
N3	0.076983	N15	0.076694
C4	0.231432	C16	0.171062
C5	0.023201	C17	-0.114715
H6	0.029267	H18	0.029268
C7	0.168947	H19	-0.009634
H8	-0.023526	H20	-0.018987
H9	-0.010171	C21	0.229121
O10	-0.189555	S22	-0.163625
H11	-0.019048	H23	-0.022865
H12	-0.008840	H24	-0.009564

Table S15. Calculated SOC constants among S_0 , S_1 , T_1 , T_2 and T_3 for SI, DBMI, DIMI,

MTSI,	DTSI,	2MIP	and	2BMIP	in	solid	phase	based	on	optimized	S_1 ,	T_1	and	T_2
structur	res, resp	pective	ly.											

	$\langle S_0 \left \hat{H}_{so} \right T_1 \rangle$	$\langle S_1 \hat{H}_{so} T_1 \rangle$	$\langle S_1 \hat{H}_{so} T_2 \rangle$	$\langle S_1 \hat{H}_{so} T_3 \rangle$
SI	19.906	1.174	16.639	
DBMI	10.027	32.888	5.064	17.735
DIMI	6.366	1.027	5.545	

DTSI	56.450	0.546	46.274	6.367
MTSI	49.417	4.849	70.159	
2MIP	0.339	0.984	4.269	8.678
2BMIP	0.455	27.356	1.010	11.155

Table S16. Calculated SOC constants among S_0 , S_1 , T_1 , T_2 and T_3 for SI, DBMI, DIMI, MTSI, DTSI, 2MIP and 2BMIP in THF based on optimized S_1 and T_1 structures, respectively.

	$\langle S_0 \mid \hat{H}_{so} \mid T_1 \rangle$	$\langle S_1 \mid \hat{H}_{so} \mid T_1 \rangle$	$\langle S_1 \left \hat{H}_{so} \right T_2 \rangle$	$\langle S_1 \hat{H}_{so} T_3 \rangle$
SI	20.117	1.235	3.705	
DBMI	0.693	24.765	25.669	14.424
DIMI	6.997	0.049	0.225	
DTSI	58.973	0.121	28.842	6.110
MTSI	49.852	3.644	71.090	
2MIP	0.250	0.953	3.603	8.745
2BMIP	1.379	0.787	3.024	13.969

Table S17. Contribution to the reorganization energies of the lowest singlet excited state (λ_1) , the triplet excited state (λ_2) , and both two states (λ_{all}) of SI, DBMI, DIMI, MTSI, DTSI, 2MIP and 2BMIP in THF.

		λ_1 (cm ⁻¹)	λ_2 (cm ⁻¹)	λ _{all} (cm ⁻¹)
SI	T_1	112.84	74.44	187.28
	T_2	2069.84	881.23	2951.07
	T ₁	1020.77	987.70	2008.47
DBMI	T_2	233.82	1660.20	1894.02
	T_3	17.74	64.12	81.86
	T ₁	989.39	542.08	1531.47
DIMI	T_2	1081.58	1462.19	2543.77
	T ₁	81.30	3.55	84.85
DTSI	T_2	395.37	279.79	675.16
	T ₃	395.37	377.55	772.92

MTSI	T_1	152.76	68.48	221.24
11151	T_2	615.07	588.46	1203.53
	T ₁	966.65	2350.36	3317.01
2MIP	T_2	970.36	2632.65	3603.01
	T ₃	843.49	1128.60	1972.09
	T ₁	1480.58	1129.57	2610.15
2BMIP	T_2	3324.43	5342.17	8666.60
	T ₃	1096.58	3917.81	5014.39

Table S18. Calculated adiabatic singlet and triplet energies, adiabatic singlet-triplet energy gap ($\Delta E_{S_{1}-T_{n}}$) and ISC and RISC processes of SI, DBMI, DIMI, MTSI, DTSI, 2MIP and 2BMIP in solid phase.

		E (eV)	$\Delta E_{S^{1}-Tn}$ (eV)	k_{ISC} (s ⁻¹)	k _{RISC} (s ⁻¹)
	S_1	4.624			
SI	T_1	4.083	0.541	0	0
_	T ₂	4.521	0.103	1.77×10 ¹¹	4.24×10 ⁹
	\mathbf{S}_1	3.265			
	T_1	2.215	1.050	1.50×10 ⁸	0
DBMI	T_2	2.885	0.380	0	0
	T_3	3.252	0.013	1.72×10 ¹¹	2.71×10 ¹¹
-	S ₁	3.130			
DIMI	T_1	2.148	0.982	0	0
	T_2	2.845	0.285	9.21×10 ⁹	9.84×10 ¹
	S ₁	2.608			
DTGI	T_1	2.291	0.317	0	0
DISI	T_2	2.510	0.098	1.88×10^{12}	2.99×10 ¹⁰
	T_3	2.542	0.066	2.64×10 ¹⁰	3.23×10 ⁹
	S ₁	2.960			
MTSI	T_1	2.589	0.371	0	0
	T_2	2.832	0.128	1.28×10^{12}	4.28×10 ⁹
2MIP	S ₁	3.184		 	

	T_1	2.498	0.686	3.78×10^{6}	0
	T_2	2.502	0.682	3.98×10 ⁸	0
	T_3	3.032	0.152	3.98×10 ¹⁰	1.19×10 ⁸
	S ₁	3.123			
	T_1	2.360	0.763	6.30×10 ⁹	0
2BMIP	T_2	2.361	0.762	2.58×10 ⁷	0
	T_3	2.976	0.147	5.53×10 ¹⁰	9.48×10 ⁷

Table S19. Calculated adiabatic singlet and triplet energies, adiabatic singlet-triplet energy gap ($\Delta E_{S_{1}-Tn}$) and ISC and RISC processes of SI, DBMI, DIMI, MTSI, DTSI, 2MIP and 2BMIP in THF.

		E (eV)	ΔE _{S1-Tn} (eV)	k _{ISC} (s ⁻¹)	k _{RISC} (s ⁻¹)
SI	S_1	4.643			
	T_1	4.102	0.54	0	0
	T ₂	4.572	0.07	9.44×10 ⁹	1.18×10 ⁸
DBMI	\mathbf{S}_1	3.274			
	T_1	2.216	1.06	0	0
	T_2	2.929	0.35	1.50×10 ¹¹	3.83×10-9
	T ₃	3.262	0.01	5.89×10 ¹¹	4.55×10 ¹¹
DIMI	S ₁	3.055			
	T_1	2.144	0.91	0	0
	T_2	2.870	0.19	3.06×10 ⁷	2.15×10 ⁴
DTSI	S ₁	2.654			
	T_1	2.350	0.30	0	0
	T_2	2.542	0.11	2.11×10 ¹¹	5.45×10 ⁹
	T ₃	2.542	0.11	1.82×10 ¹⁰	2.45×10 ⁸
MTSI	\mathbf{S}_1	2.971			
	T_1	2.615	0.36	0	0
	T_2	2.863	0.11	4.10×10 ¹²	6.16×10 ¹⁰
2MIP	S ₁	3.204			
	T_1	2.533	0.67	3.53×10 ⁶	0

	T_2	2.533	0.67	1.70×10^{8}	0
	T ₃	3.059	0.15	5.27×10 ¹⁰	1.84×10^{8}
2BMIP	S_1	3.108			
	T_1	2.326	0.78	1.59×10 ⁻⁴	0
	T_2	2.621	0.49	1.84×10 ⁹	1.91×10 ¹
	T_3	2.869	0.24	2.14×10 ¹⁰	5.79×10 ⁶

Table S20. Reorganization energies (cm⁻¹) between S_0 and T_1 for SI, DBMI, DIMI, MTSI, DTSI, 2MIP and 2BMIP from the bond length, bond angle, and dihedral angle in THF, respectively.

	Reorganization energy (cm ⁻¹)						
	Bond length	Bond angle	Dihedral angle	Total			
SI	3857.17	225.77	7626.64	11709.58			
DBMI	4390.77	633.54	0.04	5024.35			
DIMI	3917.76	498.19	0.02	4415.97			
DTSI	622.10	31.22	16.12	669.44			
MTSI	1448.68	193.91	3080.90	4723.49			
2MIP	5500.30	816.18	108.54	6425.02			
2BMIP	4801.52	710.83	110.23	5622.58			