Supplementary Information:

Thermochemical Energy Storage in Barium Carbonate Enhanced by Iron (III) Oxide

Kyran Williamson,1* Kasper T. Møller,1,2 Anita M. D’Angelo,3 Terry D. Humphries,1 Mark Paskevicius,1* Craig E. Buckley,1

1Physics and Astronomy, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
2Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, Aarhus, DK-8200, Denmark.
3Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia

*Corresponding Authors:
Kyran Williamson, kyran.williamson@postgrad.curtin.edu.au and Mark Paskevicius, m.paskevicius@curtin.edu.au

Figure S1: ~1 g of BaCO$_3$-Fe$_2$O$_3$ heated from room temperature to 900 °C. $\Delta T/\Delta t = 10$ °C min$^{-1}$ using a sealed volume in a Sieverts apparatus at P_{initial}(CO$_2$) = 10$^{-2}$ bar: using a volume of either 53.27 cm3 (green curve) or 203.6 cm3 (red curve), which influences the CO$_2$ pressure achieved during decomposition of the BaCO$_3$-Fe$_2$O$_3$ RCC.
Figure S2: ~1 g of BaCO$_3$-Fe$_2$O$_3$ heated from room temperature to 900 °C. $\Delta T/\Delta t = 10$ °C min$^{-1}$) in a sealed volume (53.27 cm3) using Sieverts apparatus. Dashed curve represents the temperature and solid curve represents the pressure.