Supplementary Information

for the paper entitled "A study of the thermodynamics and mechanisms of the atmospherically relevant reaction dimethyl sulphide (DMS) + atomic chlorine (Cl) in the absence and presence of water, using electronic structure methods".

by

Lydia Rhyman, Edmond P. F. Lee, Ponnadurai Ramasami and John M. Dyke

Contents

(with page no. indicated in Column 3)

Table S1	Enthalpy of the Cl + DMS \rightarrow DMS \cdot Cl reaction (values in kcal.mol ⁻¹).	3
Table S2	Computed geometrical parameters of $Cl-S(CH_3)_2$ from refs.(18,22,24,25-27).	4
Table S3	Relative electronic energies (including ZPE), thermodynamic parameters computed at different levels and heat of reactions (298 K) computed in this work for the four channels of the DMS + Cl reaction. The values within brackets are those reported by Resende and De Almeida (ref.27).	5
Table S4	DMS + Cl:Relative electronic energies (ΔE , kcal.mol ⁻¹), relative enthalpies ($\Delta H^{\phi}_{f,298K}$, kcal.mol ⁻¹) and relative free energies (in italic, $\Delta G^{\phi}_{f,298K}$, kcal.mol ⁻¹) for the possible reaction channels.	7
Table S5	DMS + Cl + H ₂ O; Relative electronic energies (ΔE , kcal.mol ⁻¹), relative enthalpies ($\Delta H^{\phi}_{f,298K}$, kcal.mol ⁻¹) and relative free energies (in italic, $\Delta G^{\phi}_{f,298K}$, kcal.mol ⁻¹) for channel A	8
Table S6	DMS + Cl + H ₂ O Relative electronic energies (ΔE , kcal.mol ⁻¹), relative enthalpies ($\Delta H^{\phi}_{f,298K}$, kcal.mol ⁻¹) and relative free energies (in italic, $\Delta G^{\phi}_{f,298K}$, kcal.mol ⁻¹) for channel B.	1 0
Table S7	Summary of computed TST and TST + Wigner tunneling correction 298K rate coefficients for DMS+Cl+H2O reaction, obtained using DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ relative energies.	1 2
Figure S1	Energy profiles for the reaction of DMS + Cl using the UM06-2X/aVDZ method. The relative electronic energies (ΔE) are reported in kcal.mol ⁻¹ .	1 3
Figure S2	UM06-2X/aVDZ optimised geometries of the stationary points shown in Figure S1.	1 4
Figure S3	UM06-2X/aVTZ optimised geometries of the stationary points RC2, TS2, MS2, CH ₃ S, CH ₃ Cl, TS3, MS3, CH ₃ SCl and CH ₃ shown in Figure 1.	16
Figure S4	UM06-2X/aVDZ and UM06-2X/aVTZ optimised geometries for DMS•H ₂ O, Cl•H ₂ O and DMS•Cl.	18
	A discussion of the geometrical parameters of the stationary points of the DMS + Cl reaction shown in Figure 2.	20
	Comparison of the potential energy profiles obtained in ref.(27) with those	21

obtained in this work.	
Summary of previous computation work on the DMS + Cl reaction (25,27-	22
30)	
Cartesian coordinates for all stationary points for the DMS + Cl using the	23
UM06-2X/aVDZ and UM06-2X/aVTZ methods, with total energies and	
nuclear repulsion energies	
Cartesian coordinates for all stationary points for the DMS + Cl + H_2O	27
using the UM06-2X/aVDZ and UM06-2X/aVTZ methods, with total	
energies and nuclear repulsion energies	
More detail on comparison of Figure 1 with Figures 4 and 5 (for Channel A)	33
and Figure 1 with Figures 6 and 7 (for Channel B)	

Table S1: Enthalpy of the Cl + DMS \rightarrow DMS \cdot Cl reaction (values in kcal.mol⁻¹).

Ref.	ΔH ^{\$} (298K)	Method	Comments
1. Stickel et al.	-14 ±3	Adduct bond strength estimated	Probably not
(1992), ref [21]		from unpublished studies on	reliable as the
		$CH_3S(X)CH_3$ where $X=Br$ and	estimated value
		OH, where the bond strength was	comes from
		"found to be" 14.0 kcal.mol ⁻¹	unpublished
			material and is not
			on $CH_3S(X)CH_3$,
			X=Cl
2. M. L. McKee	-12.2	PMP2/6-31G(d)//3-21G(d)	The lower level
(1993), ref [30]			basis set, 3-21G*,
			is too small
3. Wilson and Hirst	-19.4	MP2(full)/6-311G(d,p)	Reasonably good
(1997), ref [28]			
4. K.C.Thompson et	-23.2	B3LYP/6-	Reasonably good
al. (2002), ref [29]		311++G(2df,p)//B3LYP/6-	
		311++G(d,p)	
5. Resende and	-12.7	UQCISD(T)/DZP//UMP2/DZP	DZP basis set is too
Almeida (1997), ref			small
[27]			
6. S. Enami et al.	-17.7	QCISD(T)/6-	Reasonably good
(2004), ref [25]		311++G(3df,3dp)//B3LYP/6-	
		311 + G(3df, 3pd)	

(this can also be written $Cl \bullet + DMS \rightarrow DMS \bullet Cl$)

Conclusion

 $\Delta H^{\phi}(298K)$ is much closer to -23.0 kcal.mol⁻¹ than -14.0 kcal.mol⁻¹, as indicated by the calculations of this work (see Table S3).

Ref	S-Cl/Å	∠C-S-Cl/º	C-S/º	∠C-S-C/º
(method used)				
[21]	no	parameters	given	
[30]	2.760	94.5	1.807	100.2
(HF 3-21G(d))				
[28]	2.590	91.7	1.790	99.8
(MP2/6-311G(d,p))				
[29]	2.680	93.7	1.820	100.7
B3LYP/6-				
311 + + G(d,p)				
[27]	2.587	91.9	1.807	99.6
UMP2/DZP				
[25]	2.620	93.5	1.800	101.1
B3LYP/6-				
311++G(3df,3p)				
[25]	2.500	91.8	1.790	99.5
MP2/6-				
311++G(2df,2p)				

Table S2: Computed geometrical parameters of Cl-S(CH₃)₂ from refs [21, 25, 27, 28-30].

	Methods	$\Delta E/kcal/mol$	ΔH/kcal/mol	$\Delta G/kcal/mol$	$\Delta S/cal/K$	$\Delta H_{f,298 \text{ K}}$ /kcal/mol	
					.mol		
	PUMP2/DZP ^a	-13.61 -12.62	-13.01	-5.96	-23.65		
	UQCISD(T)//UMP2/DZP ^b	-11.00	-11.39	-4.34	-23.65		
		(-12.32)	(-12.72)	(-5.63)	(-23.78)		
	PUMP2/aVDZ ^a	-21.79 -20.83	-21.24	-14.12	-23.88		
DMS + Cl	UQCISD(T)//UMP2/aVDZ ^b	-18.04	-18.45	-11.32	-23.91	-14 ± 3^{a}	
\rightarrow Adduct 1	UB3LYP/aVTZ	-22.50	-22.78	-16.07	-22.51	(ref [27])	
	PUMP2/cc-pVTZ//UB3LYP/aVTZ ^c	-18.81	-19.08	-12.38	-22.47		
	UM06-2X/6-31++G(d,p)	-21.28	-21.57	-14.84	-22.57		
	UM06-2X/cc-pVDZ	-21.59	-21.87	-15.14	-22.57		
	UQCISD(T)//UM06-2X/cc-pVDZ ^b	-12.01	-12.29	-5.56	-22.57		
	UM06-2X/aVDZ	-23.29	-23.59	-16.84	-22.64		
	UCCSD(T)/CBS//UM06-2X/aVDZ ^d	-20.78	-21.06	-	-		
	PUMP2/DZP	0.84 <mark>-3.76</mark>	-3.05	-5.92	9.63		
	UQCISD(T)//UMP2/DZP	-3.74	-3.04	-5.90	9.59		
		(-3.19)	(-2.50)	(-5.33)	(9.49)		
	PUMP2/aVDZ	-2.76 <mark>-7.18</mark>	-6.46	-9.36	9.73		
$DMS + Cl \rightarrow$	UQCISD(T)//UMP2/aVDZ	-6.73	-6.02	-8.91	9.69	0.20 + 1.40	
$CH_3SCH_2 + HCl$	UB3LYP/aVTZ	-10.82	-9.98	-13.28	11.07	-9.38 ± 1.49	
	PUMP2/cc-pVTZ//UB3LYP/aVTZ	-8.71	-7.87	-11.17	11.07		
	UM06-2X/6-31++G(d,p)	-5.11	-4.38	-7.29	9.76		
	UM06-2X/cc-pVDZ	-5.83	-5.15	-7.96	9.42		
	UQCISD(T)//UM06-2X/cc-pVDZ	-4.28	-3.60	-6.41	9.42		
	UM06-2X/aVDZ	-7.79	-7.05	-9.98	9.83		
	UCCSD(T)/CBS//UM06-2X/aVDZ ^d	-10.53	-9.79	-	-		

Table S3: Relative electronic energies (including ZPE), thermodynamic parameters computed at different levels and heat of reactions (298 K) computed in this work for the four channels of the DMS + Cl reaction. The values within brackets are those reported by Resende and De Almeida (ref [27]).

	PUMP2/DZP	-6.35 -7.66	-7.74	-10.66	9.79	
	UOCISD(T)//UMP2/DZP	-7.38	-7.46	-10.39	9.83	
		(-8.46)	(-8.55)	(-12.13)	(12.01)	
	PUMP2/aVDZ	-8.36	-9.67	-12.62	0.80	
DMS + C1		<mark>-9.59</mark>			9.09	-10.2 ± 0.76
DWIS + CI	UQCISD(T)//UMP2/ aVDZ	-9.33	-9.41	-12.36	9.89	
$\rightarrow CH_3S + CH_3CI$	UB3LYP/aVTZ	-13.26	-13.32	-16.28	9.93	
	PUMP2/cc-pVTZ//UB3LYP/aVTZ	-8.95	-9.02	-11.98	9.93	
	UM06-2X/6-31++G(d,p)	-10.02	-10.16	-13.04	9.66	
	UM06-2X/cc-pVDZ	-9.68	-9.81	-12.75	9.86	
	UQCISD(T)//UM06-2X/cc-pVDZ	-7.62	-7.74	-10.68	9.86	
	UM06-2X/aVDZ	-10.30	-10.44	-13.36	9.79	
	PUMP2/DZP	21.15	17.56	14.33	10.82	
		<mark>16.87</mark>			10.85	
	UQCISD(T)//UMP2/DZP	16.28	20.95	14.28	22.37	
		(12.45)	(13.12)	(9.23)	(13.05)	
	PUMP2/aVDZ	15.95	12.65	9.40	10.90	
DMS + C1		<mark>11.98</mark>			10.90	
\rightarrow CH SCl + CH	UQCISD(T)//UMP2/aVDZ	12.03	12.70	9.45	10.90	8.05 ± 1.66
\rightarrow CH ₃ SCI + CH ₃	UB3LYP/aVTZ	4.81	5.47	2.23	10.87	
	PUMP2/cc-pVTZ//UB3LYP/aVTZ	8.48	9.14	5.90	10.87	
	UM06-2X/6-31++G(d,p)	11.08	11.81	8.42	11.37	
	UM06-2X/cc-pVDZ	9.93	10.74	7.15	12.04	
	UQCISD(T)//UM06-2X/cc-pVDZ	13.58	14.39	10.80	12.04	
	UM06-2X/aVDZ	8.37	9.12	5.64	11.67	

^aBased on the PUMP2/DZP method, the thermal corrections for the thermodynamic parameters obtained using the UMP2/DZP method were added to the projected UMP2 energy. Same applies for PUMP2/aVDZ method. Note also that ZPE is not included in the projected energy for those highlighted in blue.

^bBased on the UQCISD(T)//UMP2/DZP and UQCISD(T)//UMP2/aVDZ methods, ZPE obtained at the UMP2/DZP and UMP2/aVDZ methods were added to the UQCISD(T) energy, respectively. Same applies for the UQCISD(T)//UM06-2X/cc-pVDZ method.

^cBased on the PUMP2/cc-pVTZ//UB3LYP/aVTZ method, the ZPE and thermal corrections obtained using the UB3LYP/aVTZ method were added to the projected UMP2 energies.

^dThe energetic parameters at the UCCSD(T)/aVnZ//UM06-2X/aVDZ (n = D, T and Q) methods were extrapolated to the complete basis set (CBS) limit using the two- and three- parameter formulae. As recommended by Feller's group, the best CBS estimate was taken as the average of these two limits and the spread as an estimate in the uncertainty of the extrapolation procedure. The thermal correction to the enthalpy obtained using the UM06-2X/aVDZ method were added to the UCCSD(T) single point energy.

•	UM06-2X/aVTZ	UCCSD(T)/aVnZ//UM06-			DLPNO-			
		,	2X/aVTZ		UCCSD(T)/aVnZ//UM06-			
		(n = T and O)			2X/aVTZ			
					(n = T and O)			
		n = T	n = O	CBS	n = T	n = 0	CBS	
			- (-		
		Chai	nnel A	1		1		
RC1 ^b	-10.6	-6.9	-7.6	-8.2	-6.1	-6.9	-7.4	
	(-10.9)	(-7.2)	(-8.0)	(-8.5)	(-6.4)	(-7.2)	(-7.7)	
	-4.5	-0.7	-1.5	-2.1	0.0	-0.7	-1.3	
TS1	-11.5	-8.2	-9.0	-9.7	-7.5	-8.3	-8.9	
	(-12.0)	(-8.7)	(-9.6)	(-10.2)	(-8.0)	(-8.8)	(-9.4)	
	-5.2	-1.8	-2.7	-3.3	-1.1	-2.0	-2.6	
	-12.9	-12.4	-13.5	-14.4	-11.8	-12.9	-13.7	
MG1	(-12.7)	(-12.2)	(-13.3)	(-14.1)	(-	(-12.7)	(-13.5)	
MSI	-7.6	-7.1	-8.2	-9.1	11.6)	-7.7	-8.5	
					-6.5			
	-9.1	-8.5	-10.0	-11.1	-8.1	-9.7	-10.8	
$CH_3SCH_2 + UC1$	(-8.2)	(-7.7)	(-9.2)	(-10.2)	(-7.3)	(-8.8)	(-10.0)	
HCI	-11.5	-10.9	-12.4	-13.5	-10.5	-12.1	-13.2	
		Cha	nnel B					
	-0.5	-1.0	-0.8	-0.8	-0.7	-0.6	-0.6	
RC2	(-0.4)	(-0.8)	(-0.7)	(-0.7)	(-0.6)	(-0.5)	(-0.5)	
	4.2	3.9	3.9	4.0	4.0	4.1	4.2	
	15.5	17.7	17.9	18.0	18.0	18.2	18.3	
TS2	(15.4)	(17.6)	(17.8)	(17.9)	(17.9)	(18.1)	(18.2)	
	20.8	22.9	23.1	23.3	23.3	23.5	23.6	
	-11.7	-10.2	-10.4	-10.5	-9.9	-10.1	-10.2	
MS2	(-11.4)	(-9.9)	(-10.0)	(-10.1)	(-9.6)	(-9.7)	(-9.8)	
	-7.8	-6.4	-6.5	-6.6	-6.0	-6.2	-6.3	
	-11.1	-9.5	-9.9	-10.1	-9.3	-9.7	-10.0	
$CH_3S + CH_3Cl$	(-11.2)	(-9.7)	(-10.0)	(-10.2)	(-9.5)	(-9.8)	(-10.1)	
	-14.2	-12.6	-12.9	-13.2	-12.4	-12.8	-13.1	
		Chann	el C, C'					
	-22.7	-19.0	-20.1	-20.9	-18.4	-19.5	-20.3	
Adduct 1	(-23.1)	(-19.3)	(-20.4)	(-21.2)	(-	(-19.8)	(-20.7)	
Adduct I	-16.2	-12.5	-13.6	-14.4	18.7)	-13.1	-13.8	
					-11.9			
	7.2	10.0	8.8	8.0	10.7	9.6	8.8	
TS3	(7.1)	(9.9)	(8.8)	(7.9)	(10.6)	(9.5)	(8.7)	
	13.4	16.2	15.0	14.2	16.9	15.8	15.0	
	4.3	7.9	6.5	5.5	8.4	7.0	6.0	
MS3	(5.1)	(8.7)	(7.4)	(6.3)	(9.3)	(7.9)	(6.9)	
	8.9	12.5	11.1	10.1	13.0	11.6	10.6	
$CH_{3}C1 + CH_{2}$	5.6	8.1	6.5	5.4	8.3	6.7	5.6	
	(6.4)	(8.9)	(7.3)	(6.2)	(9.1)	(7.5)	(6.3)	

Table S4: DMS + C1: Relative electronic energies (ΔE , kcal.mol⁻¹), relative enthalpies (in bracket, $\Delta H^{\phi}_{f,298K}$, kcal.mol⁻¹)^a and relative free energies (in italic, $\Delta G^{\phi}_{f,298K}$, kcal.mol⁻¹) for the three possible channels.

	2.8	5.3	3.7	2.6	5.5	3.9	2.8
^a The thermal co	prrection to the ently	alny obta	ined usin	a the UN	106-2X	aVT7 met	hod were

^aThe thermal correction to the enthalpy obtained using the UM06-2X/aVTZ method were added to the UCCSD(T) single point energy (ZPE is included in the electronic energies). ^bThe structure of RC1 was obtained from its respective IRC and the energetic parameters were obtained by single point calculations.

Table S5: DMS + Cl + H₂O:Relative electronic energies (ΔE , kcal.mol⁻¹), relative enthalpies (in bracket, $\Delta H^{\phi}_{f,298K}$, kcal.mol⁻¹)^a and relative free energies (in italic, $\Delta G^{\phi}_{f,298K}$, kcal.mol⁻¹) for the channel A.

	UM06-	UCCSD(T)/aVnZ	UCCSD(DLF	PNO-	DLPNO-
	2X/aV	//UN	/106-	T)/CBS//	UCCSE	D(T)/aVn	UCCSD(T)/C
	TZ	2X/a	VTZ	UM06-	Z//U	M06-	BS//UM06-
		(n = T)	and Q)	2X/aVTZ	2X/a	NTZ	2X/aVTZ
					(n = T)	and Q)	
		n = T	n = Q		n = T	n = Q	
	•		Pat	hway (a)			
DMS•H ₂ O	-4.4	-4.2	-3.9	-3.8	-4.0	-3.8	-3.7
+C1	(-4.5)	(-4.3)	(-4.0)	(-3.9)	(-4.1)	(-3.9)	(-3.8)
	2.5	2.7	3.0	3.1	2.9	3.1	3.2
DMS•H ₂ O	-26.0	-21.9	-22.8	-23.5	-21.0	-22.0	-22.8
$+ Cl \rightarrow$	(-26.2)	(-22.1)	(-23.0)	(-23.7)	(-21.3)	(-22.3)	(-23.0)
DMS•H ₂ O	-11.8	-7.7	-8.7	-9.3	-6.9	-7.9	-8.6
•Cl-1							
TS1•H ₂ O-	-7.7	-4.0	b	b	-2.8	-2.7	-2.6
A	(-8.2)	(-4.5)	_	_	(-3.3)	(-3.2)	(-3.1)
	6.3	10.0			11.2	11.4	11.4
TS1•H ₂ O-	-14.1	-10.8	-11.5	-12.0	-9.9	-10.6	-11.1
В	(-14.7)	(-11.4)	(-12.0)	(-12.5)	(-10.5)	(-11.2)	(-11.7)
	0.0	3.3	2.7	2.2	4.2	3.5	3.0
MS14U O	-15.8	-15.0	-16.0	-16.6	-14.3	-15.2	-15.8
1	(-15.4)	(-14.6)	(-15.5)	(-16.2)	(-13.8)	(-14.7)	(-15.4)
-1	-3.6	-2.8	-3.7	-4.4	-2.0	-2.9	-3.6
			Pat	hway (c)			
	-22.7	-19.0	-20.1	-20.9	-18.4	-19.5	-20.3
	(-23.1)	(-19.3)	(-20.4)	(-21.2)	(-18.7)	(-19.8)	(-20.7)
П20	-16.2	-12.5	-13.6	-14.4	-11.9	-13.0	-13.8
DMS•Cl+	-29.9	-25.9	-26.7	-27.3	-25.1	-25.9	-26.5
$H_2O \rightarrow$	(-30.5)	(-26.5)	(-27.3)	(-27.9)	(-25.7)	(-26.5)	(-27.1)
DMS•H ₂ O	-15.1	-11.1	-11.9	-12.5	-10.3	-11.1	-11.7
•C1-2							
TSIO	-4.7	0.7	-0.3	-1.1	2.0	1.0	0.3
131•11 ₂ 0-	(-6.4)	(-1.0)	(-2.0)	(-2.7)	(0.4)	(-0.7)	(-1.4)
C	11.2	16.5	15.6	14.8	17.9	16.9	16.1
MS1.H.O	-18.1	-17.0	-18.0	-18.7	-14.3	-15.2	-17.9
1 1 1 1 1 1 1 1 1 1	(-18.3)	(-17.2)	(-18.2)	(-18.9)	(-13.8)	(-14.7)	(-18.1)
-2	-4.1	-3.0	-4.0	-4.7	-2.2	-3.2	-3.9
					•		
CH ₃ SCH ₂ •	-12.4	-11.6	-12.7	-13.5	-11.0	-12.1	-12.9
$H_2O +$	(-11.9)	(-11.1)	(-12.2)	(-13.0)	(-10.5)	(-11.6)	(-12.4)
HC1	-7.1	-6.3	-7.4	-8.2	-5.7	-6.8	-7.6
CH ₃ SCH ₂	-13.0	-12.5	-13.9	-15.0	-12.0	-13.5	-14.6
+	(-12.7)	(-12.2)	(-13.7)	(-14.7)	(-11.7)	(-13.3)	(-14.4)
HCl•H ₂ O	-9.7	-9.2	-10.7	-11.7	-8.7	-10.3	-11.4
CH ₃ SCH ₂	-9.1	-8.5	-10.0	-11.1	-8.4	-9.7	-10.8

+ HCl +	(-8.2)	(-7.7)	(-9.2)	(-10.2)	(-7.3)	(-8.8)	(-10.0)
H_2O	-11.5	-10.9	-12.4	-13.5	-10.5	-12.1	-13.2

^aThe thermal correction to the enthalpy obtained using the UM06-2X/aVTZ method was added to the UCCSD(T) single point energy (ZPE is included in the electronic energies).

^b Reliable value could not be obtained; calculations were very lengthy involving several re-starts, thus extrapolation to the CBS limit could not be performed. However, a reliable DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ value was obtained.

Table S6: DMS + Cl + H₂O: Relative electronic energies (ΔE , kcal.mol⁻¹), relative enthalpies (in bracket, $\Delta H^{\phi}_{f,298K}$, kcal.mol⁻¹)^a and relative free energies (in italic, $\Delta G^{\phi}_{f,298K}$, kcal.mol⁻¹) for channel B.

	UM06-	UCCSD(T)/aVnZ	UCCSD(T)	DLP	NO-	DLPNO-
	2X/aVT	//UN	406-	/CBS//UM	UCCSD(Γ)/aVnZ/	UCCSD(T)/
	Z	2X/aVT	Z(n = T)	06-	/UM06-2	X/aVTZ	CBS//UM06
		and	Q)	2X/aVTZ	(n = T a)	and Q)	-2X/aVTZ
		n = T	n = Q		n = T	n = Q	
			Pa	athway (a)			
DMS•H ₂	-4.4	-4.2	-3.9	-3.8	-4.0	-3.8	-3.7
O + Cl	(-4.5)	(-4.3)	(-4.0)	(-3.9)	(-4.1)	(-3.9)	(-3.8)
	2.5	2.7	3.0	3.1	2.9	3.1	3.2
DMS•H ₂	-15.5	-11.1	-11.6	-12.1	-9.9	-10.4	-10.8
O + Cl	(-16.1)	(-11.7)	(-12.2)	(-12.6)	(-10.4)	(-11.0)	(-11.4)
\rightarrow	-1.6	2.8	3.0	1.9	4.1	3.5	3.1
DMS•H ₂							
O•Cl-3							
$TS2 \cdot H_2$	9.8	12.2	12.6	12.9	13.0	13.4	13.6
O-A	(9.3)	(11.7)	(12.1)	(12.4)	(12.5)	(12.9)	(13.2)
	23.8	26.2	26.6	26.9	27.0	27.4	27.7
MS2•H	-18.4	-15.2	-15.0	-14.8	-14.2	-14.1	-14.0
0_{-1}	(-18.3)	(-15.1)	(-14.9)	(-14.8)	(-14.1)	(-14.0)	(-14.0)
0-1	-5.4	-2.2	-2.0	-1.9	-1.2	-1.1	-1.1
	1		Pa	athway (c)		1	
DMS•C1	-22.7	-19.0	-20.1	-20.9	-18.4	-19.5	-20.3
$+ H_2O$	(-23.1)	(-19.3)	(-20.4)	(-21.2)	(-18.7)	(-19.8)	(-20.7)
- 1120	-16.2	-12.5	-13.6	-14.4	-11.9	-13.0	-13.8
DMS•Cl	-29.5	-25.4	-26.2	-26.9	-24.5	-25.4	-26.0
$+ H_2O$	(-30.0)	(-25.9)	(-26.8)	(-27.4)	(-25.1)	(-25.9)	(-26.7)
\rightarrow	-14.9	-10.7	-11.6	-12.2	-9.9	-10.8	-11.4
DMS•Cl							
•H ₂ O-4							
TS2•H ₂	32.1	34.2	34.4	34.6	35.3	35.5	35.7
0-B	(31.7)	(33.8)	(34.4)	(34.2)	(34.9)	(35.1)	(35.3)
	46.2	48.3	48.5	48.7	49.4	49.6	49.8
MS2•H ₂	-18.8	-15.7	-15.5	-15.4	-15.0	-14.9	-14.8
0-2	(-18.7)	(-15.6)	(-15.5)	(-15.4)	(-14.9)	(-14.8)	(-14.7)
	-6.1	-2.9	-2.8	-2.7	-2.2	-2.1	-2.1
DMS•Cl	-29.9	-25.9	-26.7	-27.3	-25.1	-25.9	-26.5
$+ H_2O$	(-30.5)	(-26.5)	(-27.3)	(-27.9)	(-25.7)	(-26.5)	(-27.1)
\rightarrow	-15.1	-11.1	-11.9	-12.5	-10.3	-11.1	-11.7
DMS•CI							
•H ₂ O-2	21.7	22.5	22.0	24.1	24.6	25.0	25.2
$TS2 \cdot H_2$	$\frac{31.7}{(21.2)}$	33.3	33.8	34.1	<i>34.6</i>	35.0	35.2
O-C	(31.2)	(33.1)	(33.4)	(33.7)	(34.2)	(34.5)	(34.7)
	46.0	4/.9	48.2	48.5	49.0	49.3	49.5
$MS2 \cdot H_2$	-17.6	-15.3	-15.1	-14.9	-14.6	-14.5	-14.4
0-3	(-17.3)	(-14.9)	(-14.7)	(-14.6)	(-14.2)	(-14.1)	(-14.0)

	-5.6	-3.2	-3.0	-2.9	-2.5	-2.4	-2.3
$CH_3S +$	-13.8	-12.1	-12.3	-12.4	-11.9	-12.1	-12.2
CH ₃ Cl•	(-13.9)	(-12.3)	(-12.4)	(-12.5)	(-12.0)	(-12.2)	(-12.3)
H ₂ O	-10.9	-9.3	-9.4	-9.5	-9.0	-9.2	-9.3
CH ₃ S•H	-15.0	-13.1	-13.3	-13.4	-12.7	-13.0	-13.1
$_2O +$	(-15.2)	(-13.3)	(-13.5)	(-13.6)	(-13.0)	(-13.2)	(-13.4)
CH ₃ Cl	-10.9	-9.0	-9.2	-9.3	-8.7	-8.9	-9.0
$CH_3S +$	-11.1	-9.5	-9.9	-10.1	-9.3	-9.7	-10.0
$CH_3Cl +$	(-11.2)	(-9.7)	(-10.0)	(-10.2)	(-9.5)	(-9.8)	(-10.1)
H ₂ O	-14.2	-12.6	-12.9	-13.2	-12.4	-12.8	-13.1

^aThe thermal correction to the enthalpy obtained using the UM06-2X/aVTZ method was added to the UCCSD(T) single point energy (ZPE is included in the electronic energies).

Table S7: Summary of TST (Transition State Theory) and TST+W (Wigner correction) ratecoefficients^[71]fortheDMS+Cl+H₂Oreaction,obtainedusingDLPNO-UCCSD(T)/CBS//UM06-2X/aVTZrelative energies

Reaction		TST Rate coefficient	Reference		
		(TST+W values in	Figure		
		brackets) at 298K			
		cm ³ .molecule ⁻¹ s ⁻¹			
DMS+Cl					
	Channel A via TS1	2.25×10^{-9}	Fig.1		
	ΔE set as 0 kcal.mol ⁻¹	(3.02×10^{-9})			
	Channel B via TS2 with	6.06×10^{-25}	Fig.1		
	$\Delta E = 18.3 \text{ kcal.mol}^{-1}$	(9.84×10^{-25})			
	Channel C via TS3	1.32×10^{-18}	Fig.1		
	$\Delta E = 8.8 \text{ kcal.mol}^{-1}$	(1.44×10^{-18})			
	DMS+Cl+H ₂ O				
via	Channel A via TS1.H ₂ O-A	1.20×10^{-13}	Fig.4		
$DMS \cdot H_2O + Cl$	$\Delta E = 1.1 \text{ kcal.mol}^{-1}$	(1.69×10^{-13})			
via	Channel A via TS1.H ₂ O-B	1.05×10^{-9}	Fig,4		
$DMS \cdot H_2O + Cl$	ΔE set as 0 kcal.mol ⁻¹	(1.64×10^{-9})			
via	Channel A via TS1.H ₂ O-C	1.33 × 10 ⁻²⁹	Fig.5		
$DMS \cdot Cl + H_2O$	$\Delta E = 20.6 \text{ kcal.mol}^{-1}$	(3.89×10^{-29})			
via	Channel B via TS2.H ₂ O-A	3.07×10^{-25}	Fig.6		
$DMS \cdot H_2O + Cl$	$\Delta E = 17.3 \text{ kcal.mol}^{-1}$	(4.60×10^{-25})			
via	Channel B via TS2.H ₂ O-B	2.90×10^{-54}	Fig.7		
$DMS \cdot Cl + H_2O$	$\Delta E = 56.0 \text{ kcal.mol}^{-1}$	(4.08×10^{-54})			
via	Channel B via TS2.H ₂ O-C	4.26×10^{-54}	Fig.7		
$DMS \cdot Cl + H_2O$	$\Delta E = 56.0 \text{ kcal.mol}^{-1}$	(5.93×10^{-54})			

Figure S1: Energy profiles for the reaction of DMS + Cl using the UM06-2X/aVDZ method. The relative electronic energies (ΔE) are reported in kcal.mol⁻¹ *.

*RC1 and RC2 were only located at the UM06-2X/aVTZ level

Figure S2: UM06-2X/aVDZ optimised geometries of the stationary points shown in Figure S1.

TS3

Н5

1.086 Å

Figure S3: UM06-2X/aVTZ optimised geometries of the stationary points RC2, TS2, MS2, CH₃S, CH₃Cl, TS3, MS3, CH₃SCl and CH₃ shown in Figure 1.

Figure S4: UM06-2X/aVDZ and UM06-2X/aVTZ optimised geometries for DMS•H₂O, Cl•H₂O and DMS•Cl.

A discussion of the geometrical parameters of the stationary points of the DMS + Cl reaction shown in Figure 2.

For channel A the TS involved in the hydrogen abstraction, TS1, consists of the simultaneous breaking of the C-H bond (TS1 bond length 1.310 Å) and forming of the H-Cl bond (TS1 bond length 1.565 Å). The S-C2 bond length of TS1 is shortened by 0.084 Å compared to the equivalent bond length in DMS and this is also accompanied by an increase in the C-S-C bond angle by 0.9° (see Figure 2). Consequently, TS1 leads to a weakly bound complex MS1 where the bond distance between C2 in CH₂ of CH₃SCH₂ and H6 of HCl is 2.063 Å. In MS1, the S-C2 bond length is further shortened to 1.702 Å which is comparable to the S-C2 bond length of CH₃SCH₂. The C-S-C bond angle of both MS1 (100.7°) and CH₃SCH₂ (100.6°) is comparable. The geometrical parameters obtained using the UM06-2X/aVDZ method are close to those obtained by the UM06-2X/aVTZ method and are in good agreement with those reported using the UMP2/DZP method.^[27] The geometrical parameters of TS1 were compared with the parameters of the hydrogen abstraction TS obtained for the DMS + Cl_2 reaction^[41] using the MP2/aVDZ method (refer to TS2 of ref [41]). The reported TS^[41] was reoptimised in our work using the M06-2X/aVTZ method so that comparison could be made with the DMS-Cl TS. It was observed that for the DMS + Cl₂ reaction, the C-H and H-Cl bond distances are 1.321 Å and 1.637 Å, respectively (C-S-C bond angle = 101.3° ; S-C2 = 1.697 Å), indicating that TS1 for the DMS + Cl reaction is more advanced on the reaction surface compared with the TS of the reaction with Cl₂.

For channel C', the Cl atom of adduct 1 interacts with the S atom of DMS in a C_s symmetry structure with a computed S-Cl bond distance of 2.563 Å and C-S-Cl bond angle of 92.0° at the UM06-2X/aVTZ level (see Figure 2). Upon the formation of adduct 1, the C-S-C bond angle increases slightly from 98.6° (DMS) to 99.8° along with the shortening of the S-C bond length from 1.806 Å (DMS) to 1.769 Å in adduct 1. The UM06-2X/aVDZ and UM06-2X/aVTZ geometrical parameters are in excellent agreement with the computed values reported using the UMP2/DZP method^[41] where the S-Cl bond distance is 2.587 Å and the C-S-Cl bond angle is 99.6°. However, the significant difference between these methods lies in their electronic energies relative to the reactants (UMP2/DZP = -11.9 kcal/mol; UM06-2X/aVDZ = -23.3 kcal/mol; UM06-2X/aVTZ = -22.7 kcal.mol⁻¹).

On comparing the computed UM06-2X geometrical parameters for adduct 1 with available theoretical values,^[25,27-29] it is found that there are differences in the computed S-Cl bond distance (see Table S2 where comparison is made with results B3LYP/6-311++G(2df,2p)

(2.50 Å), B3LYP/6-311++G(3df,3pd) (2.62 Å) and MP2/6-311++G(2df,2p) (2.59 Å) calculations; UM06-2X/aVTZ value this work 2.563 Å))

It is also interesting to compare the computed structure of adduct 1, $((CH_3)_2SCI)$, with that of the covalent complex, $(CH_3)_2SCl_2$, obtained in the DMS + Cl_2 study.^[41] The $(CH_3)_2SCl_2$ complex has been observed experimentally by photoelectron spectroscopy and studied theoretically using the MP2/aVDZ method.^[41] The computed geometrical parameters of both complexes are similar; the C-S-C bond angle and the S-C bond length of $(CH_3)_2SCl_2$ is computed in ref [41] as 110.3° and 1.828 Å. These values compare with those computed in this work for adduct1 at the UM06-2X/aVDZ level of 99.9° and 1.807 Å, and at the UM06-2X/aVTZ level of 99.8° and 1.769 Å. In addition, the Cl-S-C bond angle of $(CH_3)_2SCl_2$ is computed as 91.9° while that of adduct 1 is 92.0° (UM06-2X/aVTZ).

The UM06-2X/aVDZ and UM06-2X/aVTZ optimised geometries of RC2, TS2, MS2, TS3, MS3, CH₃SCl, CH₃, CH₃S and CH₃Cl are displayed in Figures S2 and S3.

Comparison of the potential energy profiles obtained in ref.(27) with those obtained in this work.

In the work of Resende and De Almeida,^[27] the potential profiles of these reactions were obtained at the UQCISD(T)/DZP//UMP2/DZP level (see Fig.(5) of ref.[27]). On comparing these profiles with those obtained in this work (Figure 1), a number of differences were noted in the stationary points obtained:-

(i) Figure 1 of this work obtained from UM06-2X/aVTZ calculations shows that channel A proceeds via a reaction complex (RC1) to a transition state (TS1), and then to a product complex (MS1) and on to the separate products ($CH_3SCH_2 + HCl$). These stationary points were found in the UMP2 calculations of ref [27], apart from RC1 and TS1 which were not located ^[27].

(ii) This figure also shows that channel B proceeds via a reaction complex (RC2) to a transition state (TS2), a product complex (MS2) and then on to the products (CH₃S +CH₃Cl). These features were also found in ref [27]. Channel C proceeds via an adduct (adduct 1 of C') via a transition state (TS3) to a product complex (MS3) and on to the products (CH₃SCl + CH₃). All these features were located in ref [27].

Summary of previous computation work on the DMS + Cl reaction (25,27-30)

The DMS + Cl reaction has also been the subject of a number of theoretical studies.[25,27-30]. Resende and Almeida[27] used UQCISD(T)/DZP//UMP2/DZP calculations to locate maxima and minima on the potential energy surfaces of channels A – C' and calculate the activation energies, reaction enthalpies ($\Delta H^{\phi}_{f,298}$) and free energies ($\Delta G^{\phi}_{f,298}$) for all four channels. The minimum energy geometry of the adduct (CH₃S(Cl)CH₃) was determined and the enthalpy of channel C' ($\Delta H^{\phi}_{f,298}$) evaluated as -12.72 kcal.mol-1. Wilson and Hirst[28] used MP2(full)/6-311G(d,p) calculations to determine the geometry of the reagents and adduct, and evaluate the enthalpy of channel C' ($\Delta H^{\phi}_{f,298}$) as -19.35 kcal.mol-1. Similar calculations have been made by Thompson et al.,[29] Enami et al.[25] and McKee[30] at the B3LYP/6-311++G(3df,3pd), and PMP2/6-31G(d,p)//UHF/3-21G(d) levels, respectively and values of the reaction enthalpy for channel C' ($\Delta H^{\phi}_{f,298}$) of -23.2, - 17.7 and -12.1 kcal.mol-1 have been obtained. A summary of these values, and their expected reliability, is given in Table S1.

Cartesian coordinates for all stationary points for the DMS + Cl using the UM06-2X/aVDZ and UM06-2X/aVTZ methods.

	UM06-2X/aVDZ UM06-2X/aVTZ						
			D	MS			
Tota	al energy = -477.9	9505539 Hartrees	5	Total energy = -477.9971871 Hartrees			
Nuc	lear repulsion end	ergy = 110.50816	535842 Hartrees	Nuc	lear repulsion end	ergy = 111.14171	88779 Hartrees
	1				1		
6	0.000000000	1.376298000	-0.517288000	6	0.000000000	1.368528000	-0.514712000
1	-0.898057000	1.347478000	-1.145004000	1	-0.890710000	1.338894000	-1.139167000
1	0.000000000	2.304043000	0.064006000	1	0.000000000	2.291181000	0.059645000
1	0.898057000	1.347478000	-1.145004000	1	0.890710000	1.338894000	-1.139167000
6	0.000000000	-1.376298000	-0.517288000	6	0.000000000	-1.368528000	-0.514712000
1	0.000000000	-2.304043000	0.064006000	1	0.000000000	-2.291181000	0.059645000
1	-0.898057000	-1.347478000	-1.145004000	1	-0.890710000	-1.338894000	-1.139167000
1	0.898057000	-1.347478000	-1.145004000	1	0.890710000	-1.338894000	-1.139167000
16	0.000000000	0.000000000	0.666216000	16	0.000000000	0.000000000	0.663371000
			Adduct 1	(DM	[S•Cl)		
Tota	al energy = -938.1	112414 Hartrees		Tota	al energy = -938.1	757205 Hartrees	
Nuc	lear repulsion end	ergv = 216.12000	72096 Hartrees	Nuc	lear repulsion end	ergv = 217.44250	66686 Hartrees
	1	6,			1	8,	
6	0.304095000	1.113614000	1.382749000	6	0.301245000	1.110030000	1.374735000
1	-0.169992000	0.741711000	2.295731000	1	-0.172714000	0.753177000	2.284822000
1	1.290425000	0.654143000	1.267448000	1	1.280466000	0.650002000	1.268912000
1	0.367319000	2.206885000	1.406417000	1	0.371160000	2.195808000	1.388547000
6	0.304095000	1.113614000	-1.382749000	6	0.301245000	1.110030000	-1.374735000
1	1.290425000	0.654143000	-1.267448000	1	1.280466000	0.650002000	-1.268912000
1	-0.169992000	0.741711000	-2.295731000	1	-0.172714000	0.753177000	-2.284822000
1	0.367319000	2.206885000	-1.406417000	1	0.371160000	2.195808000	-1.388547000
17	0.304095000	-1.769806000	0.000000000	17	0.301245000	-1.759422000	0.000000000
16	-0.737142000	0.594866000	0.000000000	16	-0.730871000	0.586989000	0.000000000
]	S1			
Tota	al energy = =-938	.0879833 Hartre	es	Tota	al energy $= -938.1$	503603 Hartrees	
Nuc	lear repulsion end	ergy = 201.73286	542301 Hartrees	Nuc	lear repulsion end	ergy = 202.36648	70835 Hartrees
	-				-		
6	-0.270262000	-1.139662000	0.544867000	6	-0.263969000	-1.127791000	0.539289000
1	-0.257609000	-0.882927000	1.608454000	1	-0.266862000	-0.884088000	1.598398000
1	-0.165420000	-2.201941000	0.316018000	1	-0.166331000	-2.184379000	0.316608000
1	0.898740000	-0.579556000	0.179086000	1	0.873988000	-0.586222000	0.182995000
6	-1.395264000	1.307908000	0.306962000	6	-1.401455000	1.300237000	0.302430000
1	-2.082310000	1.944442000	-0.257677000	1	-2.106525000	1.922698000	-0.240581000
1	-1.692682000	1.276101000	1.360341000	1	-1.668545000	1.266922000	1.356124000
1	-0.367219000	1.675496000	0.204517000	1	-0.388892000	1.681982000	0.177617000
16	-1.476261000	-0.353777000	-0.413709000	16	-1.474363000	-0.354670000	-0.409974000
17	2.192931000	0.201137000	-0.111904000	17	2.194443000	0.201361000	-0.110700000
]	S2			
Tota	al energy $= -938.0$	0484727 Hartrees	5	Tota	al energy $= -938.1$	121088 Hartrees	
Nuc	lear repulsion end	ergy = 190.65832	22755 Hartrees	Nuc	lear repulsion end	ergy = 191.14436	94485 Hartrees
6	2.213315000	1.071568000	0.006273000	6	2.221967000	1.060503000	-0.000095000
1	3.310647000	1.063645000	-0.021767000	1	3.312342000	1.043603000	-0.000231000
1	1.853073000	1.616547000	-0.873207000	1	1.883457000	1.578931000	-0.894334000
1	1.885667000	1.562476000	0.928725000	1	1.883723000	1.578890000	0.894269000
6	-0.434021000	-0.329358000	0.124904000	6	-0.430128000	-0.309438000	-0.000567000
1	-0.350729000	0.196925000	-0.824819000	1	-0.358533000	0.216230000	-0.938658000
1	-0.664260000	-1.390001000	0.133321000	1	-0.657809000	-1.362606000	-0.000761000
1	-0.363602000	0.200957000	1.067982000	1	-0.358321000	0.215920000	0.937708000
16	1.700040000	-0.660933000	-0.039576000	16	1.699555000	-0.659873000	-0.000052000
17	-2.561600000	0.168889000	-0.033181000	17	-2.567575000	0.163565000	0.000401000

TS3							
Tota	al energy = -938.0)566962 Hartrees	5	Tota	al energy = -938.1	233919 Hartrees	
Nuc	lear repulsion end	ergv = 211.21111	76546 Hartrees	Nuclear repulsion energy = $213,1398342603$ Hartrees			
	1	85			1	8,	
6	0.399975000	1.532546000	0.027350000	6	0.393986000	1.533181000	0.029550000
1	-0 281045000	2 049828000	-0.653833000	1	-0 284241000	2 046668000	-0 645479000
1	0.186926000	1 800905000	1 066447000	1	0.177521000	1 799380000	1 060731000
1	1 435142000	1.786402000	-0 224657000	1	1 421407000	1 792152000	-0.215939000
6	2 700575000	0.601513000	0.146448000	6	2 655172000	0.608750000	0.145857000
1	2.700373000	-0.001313000	1.025816000	1	2.033173000	-0.008/30000	1.064015000
1	2.830901000	0.004008000	1.055810000	1	2.813301000	-0.003403000	1.004013000
	2.700881000	-1.081013000	0.2008/3000		2.030/34000	-1.085508000	0.195991000
	2.975955000	-0.189661000	-0.821823000		2.960118000	-0.149159000	-0.782496000
17	-1.885888000	-0.304811000	0.092795000	17	-1.862/15000	-0.309588000	0.0919/2000
16	0.224249000	-0.260968000	-0.205195000	16	0.226521000	-0.251354000	-0.205800000
			N	<u>1S1</u>			
Tota	al energy $= -938.0$)890949 Hartrees		Tota	al energy $= -938.1$	536389 Hartrees	
Nuc	lear repulsion end	ergy = 197.28046	36077 Hartrees	Nuc	lear repulsion end	ergy = 196.97921	10223 Hartrees
	1	0.			1		
6	-0.600844000	-1.268519000	0.567920000	6	-0.650912000	-1.269677000	0.569526000
1	-0.488234000	-0.990763000	1.615832000	1	-0.549950000	-1.000665000	1.611926000
1	-0 562221000	-2 319074000	0 288103000	1	-0 604482000	-2 310280000	0 286636000
1	1 185225000	-0 554077000	0.113683000	1	1 225788000	-0 537743000	0.126478000
6	-1 306474000	1 345662000	0.371143000	6	-1 323561000	1 339411000	0.375138000
1	1 865865000	2 088073000	0.371145000	1	1 862100000	2.084615000	0.202200000
1	-1.803803000	2.088073000	1 28246000		-1.802100000	2.064013000	1 26925000
	-1./20409000	1.2/3980000	1.382409000		-1./38090000	1.2030/8000	1.308833000
	-0.246410000	1.6188//000	0.401483000		-0.2/1/24000	1.610012000	0.43/39/000
16	-1.495233000	-0.246654000	-0.4/9112000	16	-1.493163000	-0.236989000	-0.488968000
_17	2.297974000	0.139094000	-0.092036000	17	2.326977000	0.133200000	-0.086610000
			Ν	<u>1S2</u>			
Tota	al energy = -938.0	0933105 Hartrees	1	Tota	al energy $= -938.1$	577727 Hartrees	
Nuc	lear repulsion end	ergy = 177.68016	38416 Hartrees	Nuc	lear repulsion ene	ergy = 177.80662	83713 Hartrees
6	2.087911000	1.177245000	-0.004398000	6	2.139648000	1.170365000	-0.001969000
1	2.915688000	1.705687000	-0.487479000	1	2.964802000	1.665777000	-0.507671000
1	1.129656000	1.442119000	-0.464270000	1	1.185822000	1.468713000	-0.431723000
1	2.062759000	1.483458000	1.052525000	1	2.156477000	1.477834000	1.046814000
6	-1.096289000	-0.433190000	0.023940000	6	-1.115768000	-0.433052000	0.034725000
1	-0.653495000	-0 253277000	-0.958184000	1	-0.658757000	-0 247633000	-0.931042000
1	-1 089966000	-1 499893000	0.255121000	1	-1 114481000	-1 494883000	0.252295000
1	-0.567332000	0 128260000	0.233121000	1	-0.501380000	0 110/27000	0.232233000
16	-0.307332000	0.128200000	0.790801000	16	-0.391389000	0.110427000	0.012803000
10	2.303373000	-0.003833000	-0.009438000	10	2.331/03000	-0.009884000	-0.012664000
1/	-2.799389000	0.128881000	-0.009437000		-2.800049000	0.1384/2000	-0.013039000
			N	183			
Tota	al energy = -938.0)58863 Hartrees		Tota	al energy $= -938.1$	266003 Hartrees	
Nuc	lear repulsion end	ergy = 208.65543	33659 Hartrees	Nuc	lear repulsion ene	ergy = 209.98838	99044 Hartrees
6	-0.169575000	1.580836000	0.734965000	6	-0.298071000	1.572905000	0.715064000
1	-0.845528000	1.504399000	1.591400000	1	-0.942979000	1.448581000	1.580466000
1	0.852205000	1.287544000	0.997328000	1	0.740748000	1.367465000	0.962400000
1	-0.173393000	2.609543000	0.351075000	1	-0.391913000	2.588045000	0.328793000
6	2.778341000	-0.239369000	-0.161308000	6	2.786392000	-0.075315000	-0.166183000
1	2 672052000	-1 020203000	0 584507000	1	2 842617000	-0 745770000	0 674647000
1	2.072002000	-0 281675000	-1 071368000	1	2 195231000	-0 345348000	-1 024720000
1	2.107200000	-0.201075000	-1.0/1306000	1	2.175251000	0.00000000	-1.027/27000 0.100050000
	3.343202000 0.679146000	1.20260000	-0.044030000		5.401451000 0.554940000	1.206544000	-0.190038000
	-0.0/8146000	-1.283698000	0.25//60000		-0.554849000	-1.306544000	0.263/12000
16	-0.772745000	0.572152000	-0.639510000	16	-0.833914000	0.506487000	-0.631744000
			R	C1			
Not	located			Tota	al energy = -938.1	503895 Hartrees	
				Nuc	lear repulsion ene	ergy = 202.12769	13837 Hartrees
1							

				6	-0.261849000	-1.129392000	0.537158000
				1	-0.284411000	-0.898265000	1.599258000
				1	-0.181749000	-2.188044000	0.314868000
				1	0.835077000	-0.616901000	0.193636000
				6	1 207645000	1 2011/2000	0.175050000
					-1.39/043000	1.301142000	0.303102000
					-2.09880/000	1.928/8/000	-0.236977000
				1	-1.6654/6000	1.26/03/000	1.358697000
				1	-0.382639000	1.677994000	0.182358000
				16	-1.477523000	-0.350893000	-0.411462000
				17	2.198549000	0.200775000	-0.110728000
			F	C2			
Not	located			Tot	al energy = -938.1	392506 Hartrees	
1,00	located			Nuc	lear repulsion end	$r_{\rm error} = 175.45140$	07108 Hartrees
				Inuc	ical repuision cit	lgy – 175.+51+5	92408 Hartices
				6	2 45(244000	1 12(007000	0.00005000
				6	-2.456344000	1.13608/000	-0.000005000
				1	-3.541797000	1.197077000	0.000067000
				1	-2.071905000	1.629779000	0.890830000
				1	-2.072025000	1.629689000	-0.890940000
				6	-0.215489000	-0.432038000	-0.000107000
				1	0 120081000	0 099956000	0 889108000
				1	0.216731000	-1 429837000	-0.000201000
				1	0.210/51000	0 100044000	-0.000201000
					0.119952000	0.100044000	-0.889300000
				16	-2.01118/000	-0.613618000	0.00004/000
				17	3.261115000	0.139229000	0.000021000
			CH	<u>3SCH</u>	2		
Tota	l energy = -477.2	930583 Hartrees	5	Tota	al energy = -477.3	376793 Hartrees	
Nuc	lear repulsion end	ergy = -477.2930	583 Hartrees	Nuc	lear repulsion end	ergy = 104.48286	31141 Hartrees
	1	05			1	0,	
6	-1 370533000	0.432250000	-0.000052000	6	-1 365228000	0 427332000	0.000128000
1	2 240350000	0.432230000	0.000032000	1	2 228066000	0.427552000	0.000120000
	-2.240330000	-0.231423000	-0.000013000		-2.228000000	-0.232949000	-0.0000/8000
	-1.385488000	1.056240000	0.89960/000		-1.382111000	1.048330000	0.892628000
1	-1.385432000	1.056081000	-0.899820000	1	-1.382144000	1.048818000	-0.892036000
16	0.108964000	-0.615561000	0.000054000	16	0.110225000	-0.610654000	-0.000150000
6	1.339118000	0.581903000	-0.000170000	6	1.330561000	0.578079000	0.000655000
1	1.086045000	1.637804000	0.000841000	1	1.081781000	1.626525000	-0.002596000
1	2.370293000	0.245361000	-0.000145000	1	2.354930000	0.247278000	-0.000208000
			CF	LSCI			
Toto	$\frac{1}{1}$ on or $\frac{1}{2}$ = 808 $\frac{2}{2}$	120660 Hartrook		Tot	$a_1 a a a a a a a a a a a a a a a a a a $	2068211 Uartra	20
Tota	ll energy – -898.2	1430009 Hartrees			ai energy – –-898	.2908244 Hartree	
Nuc	lear repulsion end	ergy = 144.47605	78812 Hartrees	Nuc	lear repulsion ene	ergy = 145.64295	86951 Hartrees
6	1.579335000	0.717147000	-0.000016000	6	1.574684000	0.706922000	-0.000028000
1	1.430196000	1.315248000	-0.903747000	1	1.429097000	1.304160000	-0.895847000
1	1.430326000	1.315024000	0.903883000	1	1.429159000	1.303943000	0.895947000
1	2 593442000	0 295943000	-0.000140000	1	2 580133000	0 285438000	-0.000110000
17	-1 334126000	0.253068000	0.000115000	17	-1 321411000	0 254423000	0.000160000
16	-1.334120000	0.720702000	0.000116000	16	0.472502000	0.716266000	0.000100000
10	0.484380000	-0.720703000	-0.000110000		0.475595000	-0.710200000	-0.000139000
	1 100	A 4 6 7 7 7	t	H ₃ S	1 400.0	100.000	
Tota	l energy = $=-438$.0167 Hartrees		Tota	al energy = -438.0	482552 Hartrees	
Nuc	lear repulsion end	ergy = 48.321449	0152 Hartrees	Nuc	lear repulsion ene	ergy = 48.580674	5306 Hartrees
6	1.109354000	0.000480000	-0.008806000	6	1.104024000	0.000456000	-0.008275000
1	1.419947000	-0.021995000	1.046593000	1	1.414520000	-0.022413000	1.039130000
1	1 506507000	-0 894725000	-0 498108000	1	1 498928000	-0.886682000	-0 496712000
1	1.500507000	0.012153000	0.150100000	1	1.501025000	0.000002000	0.461022000
1	0.602070000	0.712133000	0.00000000	1	0 600070000	0.704/31000	0.001004000
10	-0.0932/0000	0.000105000	-0.002020000	10	-0.0899/0000	0.0001010000	-0.001984000
L	-		(<u>Н3</u>	_		
Tota	l energy = -39.81	08334 Hartrees		Tota	al energy = -39.82	53668 Hartrees	
Nuc	lear repulsion end	ergy = 9.6241877	794 Hartrees	Nuc	lear repulsion ene	ergy = 9.6993683	513 Hartrees
6	0.000000000	0.000000000	0.000008000	6	0.000000000	0.000000000	0.000008000

1	0.000000000	1.084949000	-0.000017000	1	0.000000000	1.076539000	-0.000016000
1	0.939593000	-0.542474000	-0.000017000	1	0.932310000	-0.538270000	-0.000016000
1	-0.939593000	-0.542474000	-0.000017000	1	-0.932310000	-0.538270000	-0.000016000
			C	H ₃ Cl			
Tota	l energy = -500.0	0732053 Hartrees	5	Tota	al energy $= -500.1$	068852 Hartrees	5
Nuc	lear repulsion en	ergy = 51.161928	88801 Hartrees	Nuc	lear repulsion en	ergy = 51.395234	48439 Hartrees
6	0.000000000	0.000000000	-1.130781000	6	0.000000000	0.000000000	-1.126022000
1	0.000000000	1.037712000	-1.470870000	1	0.000000000	1.028979000	-1.467441000
1	-0.898685000	-0.518856000	-1.470870000	1	-0.891122000	-0.514490000	-1.467441000
1	0.898685000	-0.518856000	-1.470870000	1	0.891122000	-0.514490000	-1.467441000
17	0.000000000	0.000000000	0.658665000	17	0.000000000	0.000000000	0.656380000
			ŀ	ICI			
Total energy = =-460.7865311 Hartrees				Total energy = -460.8074726 Hartrees			
Nuclear repulsion energy = 6.9770492095 Hartrees			Nuc	lear repulsion end	ergy = 7.0355215	5280 Hartrees	
17	0.000000000	0.000000000	0.071632000	17	0.000000000	0.000000000	0.071036000
1	0.000000000	0.000000000	-1.217740000	1	0.000000000	0.000000000	-1.207620000

Cartesian coordinates for all stationary points for the DMS + $Cl + H_2O$ using the UM06-2X/aVTZ method.

DMS•H ₂ O				
Tota	al energy =-554.4	366248 Hartrees		
Nuc	lear repulsion end	ergy = 175.04121	77806 Hartrees	
16	0.644375000	0.786118000	0.000000000	
6	-0.528486000	0.631366000	1.367783000	
1	0.038586000	0.695968000	2.292916000	
1	-1.252749000	1.442697000	1.334584000	
1	-1.034140000	-0.331270000	1.319595000	
6	-0.528486000	0.631366000	-1.367783000	
1	-1.252749000	1.442697000	-1.334584000	
1	0.038586000	0.695968000	-2.292916000	
1	-1.034140000	-0.331270000	-1.319595000	
1	0.547916000	-1.623296000	0.000000000	
8	-0.063148000	-2.373284000	0.000000000	
1	0.485704000	-3.159496000	0.000000000	
DM	S •H ₂ O•Cl-1			
Tot	al energy = -1014	6131482 Hartree	25	
Nuc	lear repulsion end	ergv = 296.14819	93766 Hartrees	
itut	feur repuision en	290.1101)	<i>75700</i> Hardees	
16	0.077015000	-0.000011000	-0 522956000	
6	0.369003000	1 373063000	0 599237000	
1	0.135267000	2 285508000	0.057954000	
1	-0 301443000	1 270573000	1 448623000	
1	1 414082000	1.270373000	0.901125000	
6	0.36003/000	-1 373182000	0.500160000	
1	-0.303034000	-1.373182000 -1.270767000	1 448568000	
1	0.135208000	2 285580000	0.057708000	
1	1 414148000	-2.283380000	0.037798000	
1	2 860718000	-1.3010/3000	0.901044000	
	2.800/18000	0.000014000	-0.98194/000	
0	3.284/43000	-0.000159000	-0.118830000	
	4.229240000	0.001303000	-0.289880000	
	-2.442007000	0.000030000	-0.085270000	
	$15 \cdot \Pi_2 0 \cdot CI - 2$	6201404 Hartras	-	
1 Ou	al energy =-1014.	6201494 Hartree	S 97140 Houtuoog	
INUC	clear repulsion end	ergy = 304.38383	58/149 Hartrees	
6	0.062220000	0 72 47 40000	1 281602000	
1	-0.903329000	0.734740000	1.361093000	
1	-0.939231000	0.121397000	2.2/0310000	
1	0.008362000	1.200800000	1.234943000	
	-1./50229000	1.484155000	1.443/13000	
0	-0.963263000	0./34835000	-1.381656000	
	-1./50405000	1.4839/1000	-1.443944000	
	0.008215000	1.201241000	-1.234604000	
	-0.958675000	0.1214/6000	-2.278268000	
17	1.045831000	-1.423895000	-0.000010000	
16	-1.307535000	-0.362796000	-0.000025000	
	2.832924000	1.910348000	0.000637000	
8	1.916874000	1.626697000	-0.000038000	
1	1.935056000	0.656537000	-0.000140000	
DM	S•H ₂ O•Cl-3			
Tota	al energy $=$ -1014.	6201494 Hartree	S	
Nuc	clear repulsion end	ergy = 290.96163	13619 Hartrees	
	1 40/200000	0.5(0000000	1 100540000	
6	-1.486329000	0.562009000	1.108543000	
1	-1.922546000	1.549203000	0.99/533000	

	2.020155000	-0.023370000	1.84619/000
1	-0.437642000	0.664857000	1.382609000
6	-0.553796000	-1.605460000	-0.198860000
1	-0.669475000	-2.060398000	0.781850000
1	-0.566169000	-2.313193000	-1.020646000
1	0.601964000	-1.156915000	-0.133379000
16	-1.569016000	-0.246635000	-0.496234000
17	2.129004000	-0.522623000	0.157342000
8	0.516128000	2.256812000	-0.347874000
1	0.893651000	2.848398000	-1.001525000
1	1.151282000	1.530580000	-0.262809000
DM	[S•H ₂ O•Cl-4		
Tota	al energy $=$ -1014.	6192737 Hartree	S
Nuc	elear repulsion end	ergy = 305.25210	35578 Hartrees
6	0.331038000	-1.413086000	0.964569000
1	0.385932000	-0.712302000	1.794096000
1	-0.673124000	-1.817970000	0.878056000
1	1.064961000	-2.209310000	1.073358000
17	-0.546850000	1.620348000	0.234973000
16	0.653654000	-0.522802000	-0.561751000
6	2.263103000	0.177963000	-0.175859000
1	2.525129000	0.850938000	-0.987274000
1	2.191341000	0.736134000	0.753986000
1	2.997288000	-0.621644000	-0.099253000
8	-2.478382000	-0.897593000	-0.269833000
1	-3.213508000	-0.824854000	-0.881138000
1	-2.177820000	0.009401000	-0.111945000
DM	S•H ₂ O•Cl-2		
Tota Nuc	al energy =-1014. clear repulsion end	6201494 Hartree ergy = 304.57505	s 57510 Hartrees
6	-0.963322000	-0.734639000	1.381685000
6 1	-0.963322000 -0.958445000	-0.734639000 -0.121237000	1.381685000 2.278267000
6 1 1	-0.963322000 -0.958445000 -1.750567000	-0.734639000 -0.121237000 -1.483649000	1.381685000 2.278267000 1.444194000
6 1 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000	-0.734639000 -0.121237000 -1.483649000 -1.201182000	$\begin{array}{c} 1.381685000\\ 2.278267000\\ 1.444194000\\ 1.234388000\\ \end{array}$
6 1 1 1 17	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000
6 1 1 1 17 8	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000
6 1 1 1 17 8 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000
6 1 1 1 17 8 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000	$\begin{array}{c} 1.381685000\\ 2.278267000\\ 1.444194000\\ 1.234388000\\ -0.000055000\\ 0.000031000\\ 0.000032000\\ -0.000476000\\ \end{array}$
6 1 1 1 17 8 1 1 16	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000	$\begin{array}{c} 1.381685000\\ 2.278267000\\ 1.444194000\\ 1.234388000\\ -0.000055000\\ 0.000031000\\ 0.000032000\\ -0.000476000\\ 0.000035000\\ 1.200000000\\ 0.00000000\\ 0.00000000\\ 0.00000000$
6 1 1 17 8 1 1 16 6	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000	$\begin{array}{c} 1.381685000\\ 2.278267000\\ 1.444194000\\ 1.234388000\\ -0.000055000\\ 0.000031000\\ 0.000032000\\ -0.000476000\\ 0.000035000\\ -1.381620000\\ 2.652020000\end{array}$
6 1 1 17 8 1 1 16 6 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000	$\begin{array}{c} 1.381685000\\ 2.278267000\\ 1.444194000\\ 1.234388000\\ -0.000055000\\ 0.000031000\\ 0.000032000\\ -0.000476000\\ 0.000035000\\ -1.381620000\\ -2.278293000\\ \end{array}$
6 1 1 1 1 7 8 1 1 1 6 6 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000	$\begin{array}{c} 1.381685000\\ 2.278267000\\ 1.444194000\\ 1.234388000\\ -0.000055000\\ 0.000031000\\ 0.000032000\\ -0.000476000\\ 0.000035000\\ -1.381620000\\ -2.278293000\\ -1.234788000\\ -1.234788000\\ \end{array}$
6 1 1 17 8 1 1 16 6 1 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000	$\begin{array}{c} 1.381685000\\ 2.278267000\\ 1.444194000\\ 1.234388000\\ -0.000055000\\ 0.000031000\\ 0.000032000\\ -0.000476000\\ 0.000035000\\ -1.381620000\\ -2.278293000\\ -1.234788000\\ -1.443595000\end{array}$
6 1 1 17 8 1 1 16 6 1 1 1 1 TS1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 !+H_2O-A	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000	$\begin{array}{c} 1.381685000\\ 2.278267000\\ 1.444194000\\ 1.234388000\\ -0.000055000\\ 0.000031000\\ 0.000032000\\ -0.000476000\\ 0.000035000\\ -1.381620000\\ -2.278293000\\ -1.234788000\\ -1.234788000\\ -1.443595000\end{array}$
6 1 1 17 8 1 1 16 6 1 1 1 TS1 Tota	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 -1.750523000 -1.750523000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.443595000
6 1 1 17 8 1 1 16 6 1 1 1 TS1 Tota Nuc	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 -1.750523000 -1.750523000 -1.750523000 -1.750523000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000 5808168 Hartree: ergy = 281.41412	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.443595000
6 1 1 17 8 1 1 16 6 1 1 1 TS1 Tota Nuc 16	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 !•H2O-A al energy =-1014. clear repulsion end -0.450828000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000 5808168 Hartrees ergy = 281.41412 0.258283000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.443595000
6 1 1 17 8 1 1 16 6 1 1 1 Tota Nuc 16 6	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 !•H2O-A al energy =-1014. clear repulsion end -0.450828000 -0.168966000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000 -1.484055000 -5808168 Hartreet ergy = 281.41412 0.258283000 -1.230752000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.443595000 -30649 Hartrees -0.945235000 -0.030737000
6 1 1 17 8 1 1 16 6 1 1 Tota Nuc 16 6 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 !•H2O-A al energy =-1014. elear repulsion end -0.450828000 -0.168966000 -0.231424000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000 -1.484055000 -1.28283000 -1.230752000 -2.080036000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.443595000 -0.945235000 -0.030737000 -0.704992000
6 1 1 17 8 1 1 16 6 1 1 Tota Nuc 16 6 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 •H2O-A al energy =-1014. clear repulsion end -0.450828000 -0.168966000 -0.231424000 0.866934000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000 -1.484055000 -1.230752000 -2.080036000 -1.164235000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -1.234788000 -1.234788000 -1.234788000 -1.443595000 -0.945235000 -0.030737000 -0.704992000 0.379619000
6 1 1 17 8 1 1 16 6 1 1 1 Tota Nuc 16 6 1 1 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 !•H2O-A al energy =-1014. elear repulsion end -0.450828000 -0.168966000 -0.231424000 0.866934000 -0.879553000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000 -1.484055000 -1.230752000 -2.080036000 -1.321560000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -1.234788000 -1.234788000 -1.234788000 -1.443595000 -0.945235000 -0.030737000 -0.704992000 0.379619000 0.789129000
6 1 1 17 8 1 1 16 6 1 1 1 TS1 TS1 Tota Nuc 16 6 1 1 1 6	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 -1.750523000 -0.450828000 -0.168966000 -0.231424000 0.866934000 -0.879553000 -0.495196000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000 -1.484055000 -1.230752000 -2.080036000 -1.164235000 -1.321560000 1.415544000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -1.234788000 -1.234788000 -1.234788000 -1.443595000 -0.945235000 -0.030737000 -0.704992000 0.379619000 0.789129000 0.431756000
6 1 1 17 8 1 1 16 6 1 1 1 Tota Nuc 16 6 1 1 1 6 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 -1.750523000 -0.450828000 -0.168966000 -0.231424000 0.866934000 -0.879553000 -0.495196000 0.452897000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.200881000 -1.484055000 -1.230752000 -2.080036000 -1.321560000 1.415544000 1.336189000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.443595000 -1.443595000 -0.30737000 -0.30737000 -0.704992000 0.379619000 0.789129000 0.431756000 0.963899000
6 1 1 17 8 1 1 16 6 1 1 1 TS1 TS1 Tota Nuc 16 6 1 1 1 6 1 1 1 1 1 1 1 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 -1.750523000 -1.750523000 -0.450828000 -0.168966000 -0.231424000 0.866934000 -0.879553000 -0.495196000 0.452897000 -0.612172000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.484055000 -1.484055000 -1.230752000 -2.080036000 -1.321560000 1.415544000 1.336189000 2.415372000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.234788000 -1.443595000 -0.30737000 -0.30737000 -0.704992000 0.379619000 0.789129000 0.431756000 0.963899000 0.023661000
6 1 1 17 8 1 1 16 6 1 1 1 16 6 1 1 1 6 1 1 1 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 -1.750523000 -1.750523000 -0.450828000 -0.450828000 -0.231424000 0.866934000 -0.879553000 -0.495196000 0.452897000 -0.612172000 -1.331216000	-0.734639000 -0.121237000 -1.483649000 -1.201182000 1.423791000 -1.626956000 -0.656753000 -1.910814000 0.362959000 -0.734717000 -0.121442000 -1.200881000 -1.200881000 -1.484055000 -1.230752000 -2.080036000 -1.321560000 1.415544000 1.336189000 2.415372000 1.169851000	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.234788000 -1.443595000 -0.30737000 -0.30737000 -0.704992000 0.379619000 0.789129000 0.431756000 0.963899000 0.023661000 1.083733000
6 1 1 17 8 1 1 16 6 1 1 1 TS1 Tota Nuc 16 6 1 1 1 1 1 1 1 1 1 1	-0.963322000 -0.958445000 -1.750567000 0.008043000 1.046165000 1.916671000 1.935101000 2.832656000 -1.307619000 -0.963548000 -0.959400000 0.008092000 -1.750523000 -1.750523000 -1.750523000 -0.450828000 -0.168966000 -0.231424000 0.866934000 -0.879553000 -0.495196000 0.452897000 -0.612172000 -1.331216000 -3.024586000	$\begin{array}{r} -0.734639000\\ -0.121237000\\ -1.483649000\\ -1.201182000\\ 1.423791000\\ -1.626956000\\ -0.656753000\\ -1.626959000\\ -0.656753000\\ -1.910814000\\ 0.362959000\\ -0.734717000\\ -0.121442000\\ -1.200881000\\ -1.200881000\\ -1.200881000\\ -1.20881000\\ -1.230752000\\ -2.080036000\\ -1.321560000\\ 1.321560000\\ -1.321560000\\ 1.415544000\\ 1.336189000\\ 2.415372000\\ 1.169851000\\ -0.231298000\\ \end{array}$	1.381685000 2.278267000 1.444194000 1.234388000 -0.000055000 0.000031000 0.000032000 -0.000476000 0.000035000 -1.381620000 -2.278293000 -1.234788000 -1.234788000 -1.234788000 -1.443595000 -0.30737000 -0.30737000 0.379619000 0.379619000 0.379619000 0.431756000 0.963899000 0.023661000 1.083733000 -0.308433000

1	-4.208541000	-0.514261000	0.627165000		
17	2.721537000	-0.118687000	0.290415000		
TS1	•H ₂ O-B				
Tota	$\frac{1}{1}$ energy =-1014.	5870086 Hartree	S		
Nuclear repulsion energy = 280.9115148779 Hartrees					
1140	ieur repuision en	200.91191			
16	0.654200000	0.021007000	0 733640000		
6	-0.034209000	0.921997000	0.786202000		
0	0.051055000	-0.037744000	-0./80292000		
1	0.121344000	-1.040550000	-1./94309000		
1	1.281016000	-0.525157000	-0.364098000		
I	-0.35/31/000	-1.35/99/000	-0.051//6000		
6	-0.722722000	1.1569/9000	1.054960000		
l	0.291824000	1.088886000	1.444599000		
1	-1.129248000	2.147376000	1.238530000		
1	-1.363290000	0.395435000	1.492814000		
1	-2.945908000	-0.661634000	-0.359028000		
8	-2.907984000	-1.184273000	0.447303000		
1	-3.745633000	-1.649438000	0.500254000		
17	2.689691000	-0.392006000	0.261236000		
TS1	•H ₂ O-C				
Tota	l energy = -1014.	5731679 Hartree	8		
Nuc	lear repulsion end	ergv = 301.94928	10067 Hartrees		
1,440	ieur repuision en	501191920			
6	-1 237574000	-1 198373000	0 956797000		
1	-0.975734000	-2 226964000	0.729824000		
1	0.456357000	0.765122000	1 575022000		
1	-0.430337000	-0.703122000 1 124441000	1.373022000		
ſ	-2.214940000	-1.134441000	1.430434000		
0	-1.33/682000	1.316/31000	-0.086818000		
1	-1.81/365000	1.475433000	0.875128000		
l	-0.010023000	1.641053000	0.173053000		
1	-1.669613000	1.980939000	-0.877680000		
17	1.799426000	-0.839860000	-0.188830000		
16	-1.282004000	-0.311885000	-0.606636000		
1	1.596597000	2.383273000	-0.177055000		
8	1.173249000	1.799561000	0.463308000		
1	1.534793000	0.806959000	0.261209000		
TS2	•H ₂ O-A				
Tota	l energy = -1014.	5544117 Hartree	8		
Nuc	lear repulsion end	ergv = 279.09528	66164 Hartrees		
	1	8,			
6	-2.203529000	0.732251000	0.641184000		
1	-3 217963000	1 069424000	0 434565000		
1	-2 093909000	0 510854000	1 699842000		
1	-1 506556000	1 515453000	0 344738000		
6	0.180300000	0.006800000	0.033265000		
1	0.189390000	-0.900809000	1.106020000		
1	0.112142000	-0.915502000	1.100020000		
1	0.319522000	-1.845208000	-0.4/8016000		
l	0.210466000	0.029942000	-0.5180/0000		
16	-1.914766000	-0.729575000	-0.365657000		
17	2.371092000	-0.565733000	0.135988000		
8	0.750745000	2.177831000	-0.271697000		
1	1.039282000	2.888359000	-0.848101000		
1	1.543571000	1.659900000	-0.075393000		
TS2	•H ₂ O-B				
Tota	$\frac{1}{1}$ energy = -1014	5185919 Hartree	5		
Nuc	lear repulsion end	ergv = 2.98, 51211	61761 Hartrees		
1,40					
6	-0 357564000	0 245903000	1 634175000		
1	-0 725106000	1 230247000	1 864038000		
1 1	_1 11/502000	-0 52115/000	1 5573/7000		
		-11.17.11.1400.01	1		

1	0.551170000	-0.016921000	2.153640000
17	-0.361821000	1.444953000	-0.425827000
16	0.764158000	-0.983306000	-0.154708000
6	2.368822000	-0.173509000	-0.206195000
1	2.429650000	0.474797000	-1.076052000
1	2.542606000	0.409133000	0.696496000
1	3.122743000	-0.956952000	-0.278106000
8	-2 534541000	-1 003526000	-0 268432000
1	-2 572248000	-1 634665000	-0.989828000
1	-2.101000000	-0.221940000	-0 634467000
TS2	2.101000000	0.2217 10000	0.021107000
Tot	al energy = -1014	5194601 Hartree	\$
Nuc	clear repulsion end	ergy = 298.47622	291786 Hartrees
6	-0.290027000	-0.687752000	1.520735000
1	-1.170877000	-1.300955000	1.447235000
1	0.494762000	-1.113053000	2.125837000
1	-0.492888000	0.364322000	1.654679000
17	-0 507803000	-1 248458000	-0 784547000
8	-2 300084000	1 234655000	0.211937000
1	-1 993566000	0 505647000	-0 344898000
1	-3 101191000	1 564124000	-0 199732000
16	1 6/3/30000	0.041447000	0.205033000
6	1.043439000	1 5/13/2000	0.203033000
1	0.8520/1000	1.341342000	1 618002000
1	0.032341000	1.570544000	-1.018092000
	0.074462000	1.830972000	-0.089339000
	1./03146000	2.314200000	-0.409309000
MS	<u>I•H₂O-I</u>	5004155 II	
Nuc	elear repulsion end	$s_{2} = 274.17331$	s 18329 Hartrees
6	0.252622000	-1.048594000	0.597067000
1	0.475311000	-1.448410000	-0.382674000
1	0.174115000	-1.716674000	1.441208000
1	-1.747977000	-0.657630000	0.110316000
6	0.632908000	1.289471000	-0.712346000
1	0.921856000	2.331974000	-0.612681000
1	1.349380000	0.763875000	-1.338857000
1	-0.373307000	1.222269000	-1.119499000
16	0.651245000	0 573701000	0.947825000
17	-2 896145000	-0 233502000	-0 337464000
1	2 927991000	-0 530646000	0.125456000
8	3 205869000	-0 706366000	-0 779287000
1	4 127050000	-0.968761000	-0.775624000
MS	1.12/030000	-0.700701000	-0.723024000
Tat	$1 - 11_2 - 2$	5055/10 Uartraa	9
Nuc	elear repulsion end	ergy = 283.86171	s 83630 Hartrees
6	-0.764154000	-1.053724000	1.123328000
1	-0.091026000	-1.900971000	1.031968000
1	-0.215002000	-0.202561000	1.520135000
1	-1.602922000	-1.306135000	1.767552000
6	-2.298398000	0.717612000	-0.232535000
1	-2.633811000	0.931508000	0.772073000
1	-0.369965000	1.803250000	0.006310000
1	-2.835321000	1.130420000	-1.072424000
17	2 435088000	-0 409675000	-0 218292000
16	-1 363315000	-0 673118000	-0 536962000
1	-1.505515000	2 852202000	0.5333902000
1 8	0.707152000	2.033203000	0.055556000
0	0.0100+0000	1.2/2142000	0.000/90000

1	1.647612000	0.609128000	-0.007715000
MS	2•H ₂ O-1		
Tota	al energy $= -1014$.6002765 Hartree	s
Nuc	lear repulsion end	ergy = 282.50685	67880 Hartrees
	1	0,	
6	-2.240493000	-0.130973000	0.838840000
1	-3.308930000	0.022601000	0.670127000
1	-2.120311000	-0.904756000	1.592778000
1	-1.805070000	0.811422000	1.164528000
6	1.286139000	-0.563427000	1.189152000
1	0.637508000	0.286594000	1.376882000
1	2.079185000	-0.621240000	1.925941000
1	0.720957000	-1.489423000	1.159610000
16	-1.551661000	-0.640935000	-0.739477000
17	2.035308000	-0.325124000	-0.415867000
8	-0.078267000	2.246254000	-0.029709000
1	-0.478998000	1.630654000	-0.656415000
1	0.854261000	2.242584000	-0.262366000
MS	2•H ₂ O-2		
Tota	al energy $=$ -1014.	6009738 Hartree	s
Nuc	lear repulsion end	ergy = 285.24489	30031 Hartrees
	1	0,	
6	1.923092000	-0.254520000	1.001280000
1	2.998892000	-0.340992000	1.099053000
1	1.588190000	0.754191000	1.219353000
1	1.416060000	-0.979380000	1.628306000
17	1.498611000	-0.613183000	-0.701727000
16	-1.557630000	-0.423296000	0.795216000
6	-2.052106000	-0.393114000	-0.929832000
1	-1.641229000	0.470305000	-1.446895000
1	-1.761704000	-1.317354000	-1.422474000
1	-3.142047000	-0.326684000	-0.938518000
8	0.090927000	2.398845000	-0.122825000
1	-0.511847000	1.817739000	0.356959000
1	0.546030000	1.814058000	-0.735974000
MS	2•H ₂ O-3		
Tota	al energy $=$ -1014.	5983024 Hartree	8
Nuc	clear repulsion end	ergy = 280.66551	61220 Hartrees
6	-1.126411000	-1.016762000	1.079328000
1	-2.149534000	-1.175150000	1.399673000
1	-0.473631000	-1.811339000	1.419669000
1	-0.764253000	-0.048725000	1.406539000
17	-1.107931000	-1.032472000	-0.714074000
8	-1.867270000	1.941022000	0.259893000
1	-1.892523000	1.262884000	-0.424215000
1	-2.379495000	2.677715000	-0.079199000
16	2.151853000	-0.336375000	0.182348000
6	1.560078000	1.284824000	-0.310334000
	1.503851000	1.369290000	-1.392439000
	0.599242000	1.519/58000	0.143270000
	2.297692000	2.003044000	0.055283000
	<u>35CH2•H2O</u>	75064611	
Tota	al energy $=-553.7$	/59646 Hartrees	10070 11
Nuc	clear repulsion end	ergy = 164.94406	18870 Hartrees
10	1.0520/2000	0.1/2/55000	0 4666 40000
10	1.053062000	-0.103035000	-0.400042000
0	0.295852000	-1.310038000	0.333303000
	0.41384/000	-2.332142000	0.201804000
	0.023933000	-1.034336000	1.34/000000

6	0.627208000	1.367542000	0.392013000			
1	1.033773000	1.346933000	1.400375000			
1	1.079565000	2.182935000	-0.165566000			
1	-0.454028000	1.482363000	0.411662000			
1	-1.778908000	-0.522368000	-0.059509000			
8	-2.474580000	0.147432000	-0.071923000			
1	-2.910895000	0.046746000	-0.920292000			
HC	l•H ₂ O					
Tot	al energy = -537.2	2463179 Hartrees	3			
Nuc	clear repulsion end	ergy = 46.201851	1188 Hartrees			
17	-1.214515000	-0.000006000	0.007308000			
1	0.078915000	0.000393000	-0.070829000			
8	1.972394000	0.000031000	-0.084238000			
1	2.393936000	-0.767431000	0.310107000			
1	2.394755000	0.766898000	0.310388000			
CH	₃ Cl•H ₂ O					
Tot	al energy =-576.5	434844 Hartrees				
Nuc	clear repulsion end	ergy = 103.10885	65394 Hartrees			
6	0.769266000	1.150709000	-0.002075000			
1	1.275374000	1.525787000	-0.883827000			
1	1.237927000	1.524893000	0.900490000			
1	-0.287677000	1.391180000	-0.023882000			
17	0.925331000	-0.633746000	0.000146000			
8	-2.246385000	0.057921000	0.008322000			
1	-1.538119000	-0.594834000	0.007328000			
1	-3.062657000	-0.440973000	-0.056718000			
CH	₃ S•H ₂ O					
Total energy =-514.4860212 Hartrees						
Nuc	Nuclear repulsion energy = 99.0927863671 Hartrees					
6	0.648593000	1.134093000	-0.001137000			
1	0.074478000	1.352281000	0.900316000			
1	1.541726000	1.748659000	-0.046387000			
1	-0.014443000	1.341725000	-0.841174000			
16	1.034774000	-0.616988000	-0.000414000			
8	-2.204959000	-0.021470000	-0.000784000			
1	-1.437562000	-0.607270000	0.006813000			
1	-2 972473000	-0 596374000	0.000148000			

More detail on comparison of Figure 1 with Figures 4 and 5 (for Channel A) and Figure 1 with Figures 6 and 7 (for Channel B)

Inspection of Figure 1, Tables 1 and 2 shows that channels A, B and C' are exothermic. Channel B is the most exothermic but it has a significant energy barrier (see TS2 in Figure 1 at 15.5 kcal.mol⁻¹ at the UM06-2X/aVTZ level). It was important, therefore, to determine if introducing water gave rise to a reduced energy barrier for channel B, the most exothermic channel. Hence, in this work DMS + Cl + H₂O calculations only considered channels A, B and C' as channel C (which produces of CH₃SCl + CH₃) is endothermic ($\Delta H^{\phi}_{f,298} = 8.05 \pm 1.66$ kcal.mol⁻¹; Table 1).

The energy profiles computed at the UM06-2X/aVTZ level of channel A via pathways (a) (DMS•H₂O +Cl) and (c) (DMS•Cl + H₂O) are shown in Figures 4 and 5, respectively. As can be seen, in each case, the reaction proceeds via a number of energy minima as well as a submerged TS (TS1 in each case). The computed relative energies, enthalpies($\Delta H^{\phi}_{f,298K}$) and free energies ($\Delta G^{\phi}_{f,298K}$) of these stationary points at the UM06-2X, UCCSD(T)/CBS//UM06-2X/aVTZ, and DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ levels are shown in Table 5. The lowest energy transition state in these figures is TS1.H₂O-B. It is interesting to note that TS1•H₂O-B (in Figure 4) has a very similar structure with similar geometrical parameters to TS1 (in Figure 1), indicating that the presence of the water molecule does not affect the transition state structure significantly (see the structures of TS1 and TS1•H₂O-B in Figures 2 and 8 respectively). Their relative energies are also comparable (-8.9 and -11.1 kcal.mol⁻¹ at the DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ level) with TS1•H₂O-B lower than TS1 by 2.2 kcal.mol⁻¹ and this can be explained by the additional stabilisation provided by the water molecule in TS1•H₂O-B via the S---H and O----H hydrogen bonds.

The corresponding information for channel B is shown in Figures 6 and 7, and Table 6. The hydrated TSs along with their selected geometrical parameters are illustrated in Figure 8. On inspection of these figures, it is immediately obvious that Figures 6 and 7 have significant energy barriers, with the pathway via $DMS \cdot H_2O + Cl$ (Figure 6) having a lower energy barrier than the pathway via DMS•Cl + H_2O (Figure 7). In Figure 6, the relative energy of TS2• H_2O -A is 9.8 kcal.mol⁻¹ with the UM06-2X/aVTZ method and 13.6 kcal.mol⁻¹ with the DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ method, and in Figure 7, the corresponding values for (UM06-2X/aVTZ)35.7 TS2•H₂O-C are 31.7 and kcal.mol⁻¹ (DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ). This relative energy of TS2•H₂O-A of 13.6 kcal.mol⁻¹ compares with the relative energy of TS2 in channel B of the DMS + Cl reaction of 18.3

kcal.mol⁻¹, both at the DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ level. TS2 and TS2•H2O-A also have similar structures with similar geometrical parameters for the CH₃S---CH₃—Cl units (see Figure S2 and Figure 8).

The hydrated form of DMS•Cl (adduct 1 formed in channel C' of the DMS + Cl reaction) can be formed via DMS•H₂O reacting with Cl, as shown in Figure 4, and from DMS•Cl reacting with H₂O, as shown in Figure 5. The hydrated form of adduct 1 formed from DMS•H₂O + Cl (DMS•H₂O•Cl-1 in Figure 4) has a relative energy of -26.0 kcal.mol⁻¹ at the UM06-2X/aVTZ level (-22.8 kcal.mol⁻¹ at the DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ level) (see Table 5). Formation of DMS•Cl•H₂O via DMS•Cl is shown in Figure 5 and is denoted as DMS•H₂O•Cl-2. This also occurs in Figure 7 (channel B, pathway (c)). It has relative energies of -29.9 and -26.5 kcal.mol⁻¹ at the UM06-2X/aVTZ and DLPNO-UCCSD(T)/CBS//UM06-2X/aVTZ levels, respectively (see Table 6).

Inspection of Tables 5 and 6 indicates that the relative energies calculated from the UM06-2X/aVTZ method are lower than the higher level CBS values (by less than 5 kcal.mol⁻¹) except for MS1•H₂O-1 and MS1•H₂O-2 where the UM06-2X/aVTZ relative energies are slightly higher than the CBS values by ~1 kcal.mol⁻¹. Also, the differences between the extrapolated UCCSD(T)/CBS and DLPNO-UCCSD(T)/CBS values are less than 1.5 kcal.mol⁻¹. It is also worth pointing out that the T1 diagnostic value for each of the transition states is less than 0.02, the recommended upper limit to ensure low multireference character.