Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Material

For

Pressure-induced high-temperature superconductivity in ternary Y-

Zr-H compounds

Wendi Zhao,¹ Hao Song^{*},¹ Mingyang Du², Qiwen Jiang², Tiancheng Ma², Ming Xu¹, Defang Duan,^{2,*} and Tian Cui^{1,2,*}

¹Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo

University, Ningbo 315211, China

²State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

Fig.S1 The enthalpy difference curves with respect to YZrH₆ from divergent synthetic routes as a function of pressure.

Fig.S2 Predicted crystal structure of clathrate hexahydrides at 200 GPa. (a) $Fm\bar{3}m$ -Y₃ZrH₂₄, (b) $Fm\bar{3}m$ -YZr₃H₂₄, (c) $Pm\bar{3}m$ -YZrH₁₂, (d) $P\bar{3}m$ 1-YZr₂H₁₈ and (e) $P\bar{3}m$ 1-Y₂ZrH₁₈. The gray, green and pink spheres represent Y, Zr and H atoms, respectively.

Fig.S3 The electron localization functions. (a) $Pm\overline{3}$ -YZrH₆ at 1 atm and (b) P4/mmm-YZrH₈, (c) P2/m-YZr₃H₁₆ (d) $P\overline{6}m2$ -YZrH₁₈ (e) $P\overline{3}m1$ -YZr₂H₁₈ (f) $P\overline{3}m1$ -Y₂ZrH₁₈ (g) $Fm\overline{3}m$ -Y₃ZrH₂₄ (h) $Fm\overline{3}m$ -YZr₃H₂₄ (i) $Pm\overline{3}m$ -YZrH₁₂ at 200 GPa. Isosurface values are all set to 0.3.

Fig. S4 Calculated electronic band structures and atom-projected density of states for (a) $Fm\overline{3}m$ -Y₃ZrH₂₄, (b) $Fm\overline{3}m$ -YZr₃H₂₄, (c) $P\overline{3}m1$ -Y₂ZrH₁₈, (d) $P\overline{3}m1$ -YZr₂H₁₈ at 200 GPa, and (e) $Pm\overline{3}m$ -YZrH₁₂ at 160 GPa. The Fermi level is set to zero.

Fig. S5 Calculated phonon dispersion curves, projected phonon density of states (PHDOS), and Eliashberg spectral function $\alpha^2 F(\omega)$ together with the electron-phonon integral $\lambda(\omega)$ for (a) $Fm\bar{3}m$ -Y₃ZrH₂₄ (b) $Fm\bar{3}m$ -YZr₃H₂₄, (c) $P\bar{3}m$ 1-Y₂ZrH₁₈, (d) $P\bar{3}m$ 1-YZr₂H₁₈ at 200 GPa and (e) $Pm\bar{3}m$ YZrH₁₂ at 160 GPa. The size of the red solid dots in the phonon spectra is proportional to the strength of electron-phonon coupling.

Structure	Lattice	Atomic coordinates			Sites	
	parameters (Å)					
Pm3		H1	0.2367	0.0000	0.5000	6f
YZrH ₆	a=b=c=3.9768	Y1	0.5000	0.5000	0.5000	1b
1 atm	$\alpha=\beta=\gamma=90$	Zrl	0.0000	0.0000	0.0000	1a
P4/mmm		H1	0.0000	0.5000	0.2588	4i
$YZrH_8$	a=b= 2.6855	H2	0.0000	0.0000	0.3730	2g
200 GPa	c=5.0677	Н3	0.5000	0.5000	0.1310	2h
	$\alpha=\beta=\gamma=90$	Y1	0.0000	0.0000	0.0000	1a
		Zr1	0.5000	0.5000	0.5000	1d
	a=3.1472	H1	0.2460	0.2558	0.7449	4o
	b=3.8042	H2	0.0000	0.25814	0.0000	2i
P2/m	c=6.1948	Н3	0.0638	0.0000	0.1928	2m
$YZr_{3}H_{16}$	α=90	H4	0.4422	0.0000	0.3181	2m
200 GPa	$\beta = 103.34$	Н5	0.1913	0.5000	0.5587	2n
	γ= 90	H6	0.3095	0.5000	0.9324	2n
		Zr1	0.2525	0.5000	0.2514	2n
		H7	0.5000	0.2501	0.5000	21
		Y1	0.5000	0.0000	0.0000	1d
		Zr2	0.0000	0.0000	0.5000	1c
	a=3.3872	H1	0.8226	0.6451	0.3019	6n
	b=3.3872	H2	0.0000	0.0000	0.4123	2g
	c=5.1842	Н3	0.6667	0.3333	0.5000	1f
$P\overline{6}m2$	α=90	H4	0.9782	0.4891	0.8170	6n
$YZrH_{18}$	$\beta = 90$	H5	0.3333	0.6667	0.8908	2h
200 GPa	γ= 120	H6	0.6667	0.3333	0.0000	1e
		Y1	0.3333	0.6667	0.5000	1d
		Zrl	0.0000	0.0000	0.0000	1a
$Fm\overline{3}m$		H1	0.2504	-0.5000	-0.3741	96j
Y_3ZrH_{24}	a=b=c=6.9907	Zrl	0.5000	-0.5000	-0.5000	4b
200 GPa	$\alpha=\beta=\gamma=90$	Y1	0.2500	-0.2500	-0.2500	8c
		Y2	0.0000	0.0000	0.0000	4a
$Fm\overline{3}m$		H1	0.5000	0.2507	0.3754	96j
YZr ₃ H ₂₄	a=b=c=6.6703	Zrl	0.2500	0.2500	0.2500	8c
200 GPa	$\alpha=\beta=\gamma=90$	Zr2	0.5000	0.5000	0.5000	4b
		Y1	0.0000	0.0000	0.0000	4a
$P\overline{3}m1$	a=4.6782	H1	0.5864	0.9196	0.6713	12j
Y_2ZrH_{18}	b=4.6782	H2	0.7534	0.7534	-0.0000	6g
200 GPa	c=2.8418	Zr1	-0.000	0.0000	0.5000	1b
	$\alpha = \beta = 90$	Y1	0.6667	0.3333	0.8273	2d
	γ=120					

Table S1. Structural information of predicted hydrides.

$P\overline{3}m1$	a=4.6681	H1	0.5813	0.9148	0.6569	12j
$YZr_{2}H_{18}$	b=4.6681	H2	0.7447	0.7447	0.0000	6g
200 GPa	c=2.8215	Zr1	0.6667	0.3333	0.8491	2d
	$\alpha = \beta = 90$	Y1	0.0000	0.0000	0.5000	1b
	γ= 120					
$Pm\overline{3}m$		H1	0.5000	-0.0000	0.7525	12h
YZrH ₁₂	a=b=c=3.4831	Y1	0.0000	0.0000	0.0000	1a
200 GPa	$\alpha=\beta=\gamma=90$	Zrl	0.5000	0.5000	0.5000	1b

Table S2. The average charge value (*e*) and number of electrons transferred $\delta(e)$ for different atoms in hexahydrides of the Y-Zr-H system at 200 GPa.

Structure	Atom	Charge Value	$\delta(e)$
	Y	9.611	1.389
$Fm\overline{3}m$ Y ₃ ZrH ₂₄	Zr	9.023	0.977
	Н	1.214	-0.214
	Y	9.622	1.378
$Fm\overline{3}m$ YZr ₃ H ₂₄	Zr	10.483	1.517
	Н	1.236	-0.236
	Y	9.776	1.224
$P\overline{3}m1$ Y ₂ ZrH ₁₈	Zr	10.592	1.408
	Н	1.213	-0.214
	Y	9.792	1.208
$P\overline{3}m1$ YZr ₂ H ₁₈	Zr	10.656	1.344
	Н	1.216	-0.216
	Y	9.638	1.362
$Pm\overline{3}m$ YZrH ₁₂	Zr	10.550	1.450
	Н	1.233	-0.234

Table S3. The calculated EPC parameter λ , logarithmic average phonon frequency ω_{log} (K), electronic density of states at Fermi level $N_{\varepsilon f}$ (states/spin/eV/f.u.). T_c values were estimated by the Allen-Dynes modified McMillan equation.

	Pressure	Pressure			$T_{\rm c}({\rm K})$		
Structure	Space	(GPa)	λ	ω_{log}	$N_{\varepsilon f}$	0.1	0.13
	group						
YZrH ₆	Pm3	1 atm	0.72	422.94	0.69	16.30	12.55
YZrH ₈	P4/mmm	200	1.05	866.54	0.47	69.88	59.88
YZr ₃ H ₁₆	<i>P</i> 2/ <i>m</i>	200	0.73	973.59	1.00	38.59	29.87
YZrH ₁₈	Pēm2	200	2.21	794.923	0.58	156.23	142.12
Y ₃ ZrH ₂₄	Fm3m	200	2.13	992.67	1.42	184.92	168.62
Y_2ZrH_{18}	$P\overline{3}m1$	200	1.88	1025.28	1.11	169.70	154.04
		160	2.63	803.46	0.85	182.67	167.06
$YZrH_{12}$	$Pm\overline{3}m$	200	2.16	920.97	0.81	174.56	159.11
		300	1.70	1087.95	0.75	162.93	147.08
YZr ₂ H ₁₈	$P\overline{3}m1$	200	1.98	775.73	1.24	136.68	123.97
		200	1.95	748.76	1.73	130.52	118.31
YZr ₃ H ₂₄	$Fm\overline{3}m$	250	1.70	864.58	1.65	129.81	117.02
		300	1.57	924.35	1.59	127.57	114.47