Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Information

The band structure and density of states of $CsPbX_3(X=Cl, Br, and I)$ are calculated, as shown in Fig. S1(a-c), without considering the SOC effect. Obviously, with the increase of halogen atom radius, the band gap of $CsPbX_3$ gradually decreases, which are 2.12 eV, 1.79 eV, and 1.37 eV respectively, but they all show a direct band gap.

Fig. S1. The band structure and density of states of CsPbX₃, without considering the SOC effect. (a)CsPbCl₃, (b)CsPbBr₃, (c)CsPbI₃.

In this work, the adsorption characteristics of several gases on the surface of CsPbX₃ are studied, and common low-index surfaces of cubic CsPbX₃ are considered, including (100), (110), and (111) surfaces. However, in previous studies, it was shown that the (110) and (111) surfaces are less stable than the (100) surfaces due to the presence of polarity. Therefore, the adsorption performance is studied only on the CsPbX₃ (100) surface. Interestingly, along the [100] direction, CsPbX₃ shows – [CsX-PbX₂]– layer stacking order (Fig. S2). This stacking order results in two terminations on the (100) surface, labeled as CsPbX₃-CsX and CsPbX₃-PbX₂, respectively. The electrostatic potentials are calculated to evaluate two different

terminations, as shown in Fig. S3(a–f). The results show that the work functions of the CsPbX₃-PbX₂ terminations are 5.17 eV, 5.41 eV, and 5.47 eV, respectively, which were larger than 3.09 eV, 3.06 eV, and 2.46 eV for the CsPbX₃-CsX terminations, respectively. It shows that different terminations will seriously affect the distribution and transport of electrons, resulting in a large difference in the adsorption effect on different terminations. To consider all possible outcomes, the adsorption model will be built on both terminals in the [100] direction.

Fig. S2. Two different terminations are stacked along the [100] direction. (a) CsPbCl₃, (b) CsPbBr₃, (c) CsPbI₃.

First of all, the size of all adsorption models is set to 30Å, along the aperiodic direction, and the adsorption distance between the gas and the substrate is set to 3Å. In the preliminary calculation, the adsorption substrate is fixed and the gas molecules are released. When all adsorption models satisfy the convergence criteria, according to the principle that the more negative the adsorption energy is, the more stable the structure is, and the five most stable adsorption models are selected. Tables (S1–S5)

show the adsorption energies of all adsorption models for the five gases, respectively, and the model with the most negative adsorption energy is marked in red.

Fig. S3. Planar average of electrostatic potential energies for two terminations of CsPbX₃. (a, b) CsPbCl₃, (c, d) CsPbBr₃, (e, f) CsPbI₃.

Then, the maximum adsorption energies of each gas on different terminals are summarized in Table S6. From the point of view of the adsorption substrate, the adsorption energies of all adsorption models on $CsPbI_3$ are around -0.3 eV, which cannot be used as gas sensing materials. However, when CsPbBr₃ is used as the adsorption substrate, the adsorption energy of CH₂O on two different terminals is significantly higher than that of the other four gases. Based on previous research reports, we can preliminarily believe that CsPbBr₃ may have potential advantages in the field of CH₂O sensors. For the CsPbCl₃ material, the adsorption energy of CH₃OH on its surface is much higher than that of other gases, and the adsorption effect on the PbCl₂ terminal is higher than that on the CsCl terminal. However, compared with the adsorption energy of five gases on CsPbBr₃, the gas sensing performance of CsPbCl₃ is inferior to that of CsPbBr₃. In addition, from the point of view of gas, the best model should be the one that meets the maximum adsorption energy of the same gas on different substrates. In short, our final study was performed on these five most stable adsorption models, including C₂H₆/CsPbBr₃-PbBr₂, CH₄/CsPbBr₃-CsBr, CH₃CHO/CsPbCl₃-PbCl₂, CH₃OH/CsPbCl₃-PbCl₂, and CH₂O/CsPbBr₃-PbBr₂. Although the adsorption model of this work is not built on the same adsorption substrate, it still satisfies that the adsorption behavior between the gas and the adsorption substrate is the most stable.

Finally, a fine optimization with the convergence criterion of -0.01 eV/Å is performed on these optimal adsorption models of five gases, and release the three layers on the surface of the adsorption substrate. Finally, when the relaxation processes of the five models reach the convergence state, the relevant adsorption properties are calculated.

 Table S1 The total energy(E) of all CH₃OH/CsPbX₃ adsorption models, and the red data indicates the energy of the optimal model.

|--|

molecule	-PbCl ₂	-CsCl	-PbBr ₂	-CsBr	-PbI ₂	-CsI
	-220.773	-204.353	-203.874	-190.411	-184.693	-173.640
CH ₃ OH	-220.738 -220.362	-204.583 -203.851	-203.878 -203.885	-190.245 -190.174	-184.660 -184.210	-174.031 -174.072

Table S2 The total energy(E) of all $C_2H_6/CsPbX_3$ adsorption models, and the red data indicates the
energy of the optimal model.

Gas	E(eV)						
molecule	-PbCl ₂	-CsCl	-PbBr ₂	-CsBr	-PbI ₂	-CsI	
	-230.872	-214.645	-212.794	-199.864	-195.075	-184.153	
C_2H_6	-230.763 -230.698	-214.214 -214.130	-214.317 -213.495	-200.764 -200.790	-194.113 -194.976	-184.432 -184.319	

Table S3 The total energy(E) of all $CH_4/CsPbX_3$ adsorption models, and the red data indicates the
energy of the optimal model.

Gas	E(eV)						
molecule	-PbCl ₂	-CsCl	-PbBr ₂	-CsBr	-PbI ₂	-CsI	
	-214.295	-198.053	-197.246	-184.386	-177.569	-167.630	
CH_4	-214.472 -214.112	-198.156 -198.243	-197.185 -197.296	-184.530 -184.180	-177.781 -178.463	-167.731 -167.736	

Table S4 The total energy(E) of all $CH_3CHO/CsPbX_3$ adsorption models, and the red data indicate
the energy of the optimal model.

Gas	E(eV)						
molecule	-PbCl ₂	-CsCl	-PbBr ₂	-CsBr	-PbI ₂	-CsI	
	-229.212	-212.512	-212.671	-199.376	-193.315	-182.660	
CH ₃ CHO	-229.681 -229.276	-213.252 -213.358	-212.871 -212.131	-199.410 -199.322	-193.693 -192.692	-182.900 -182.623	

Table S5 The total energy(E) of all $CH_2O/CsPbX_3$ adsorption models, and the red data indicatesthe energy of the optimal model.

Gas	E(eV)	

molecule	-PbCl ₂	-CsCl	-PbBr ₂	-CsBr	-PbI ₂	-CsI
	-212.402	-196.584	-192.144	-182.694	-176.214	-165.995
CH_2O	-212.173 -211.897	-196.312 -196.099	-192.542 -192.552	-182.485 -182.586	-176.601 -176.314	-165.741 -163.997

Table S6 The maximum adsorption energy of five gases on different substrates.

material	termination	C_2H_6	CH ₂ O	CH ₃ OH	CH ₄	CH ₃ CHO
CsPbBr ₃	-PbBr ₂	-0.43	<mark>-0.54</mark>	-0.27	0.14	-0.35
	-CsBr	-0.27	<mark>-0.52</mark>	-0.16	-0.47	-0.25
CsPbCl ₃	-PbCl ₂	-0.33	-0.2	-0.4	-0.39	-0.41
	-CsCl	-0.22	-0.5	-0.43	-0.28	-0.29
CsPbI ₃	-PbI ₂	-0.3	-0.24	-0.26	-0.22	-0.35
	-CsI	-0.3	-0.31	-0.31	-0.17	-0.23

Fig. S4. Different defect sites (a) Br defect, (b) Pb defect.

Table S6 The base energy of the defect model, the energy of the gas/base adsorptionsystem, and the Pb-O distance before and after adsorption.

Defect E(eV)	P-O distance	Covalent
--------------	--------------	----------

type	before	after	before	after	radius
V_{Br}^1	-159.48	-191.69	3.92	2.81	
V_{Br}^2	-159.48	-191.66	3.90	2.82	
V_{Br}^3	-159.49	-191.64	3.88	2.78	
V_{Br}^4	-159.48	-191.65	3.91	2.86	2.55
V_{Pb}^1	-156.42	-188.27	/	/	2.33
V_{Pb}^2	-156.43	-188.48	3.92	2.85	
V_{Pb}^3	-156.43	-188.29	3.93	3.99	
V_{Pb}^4	-156.43	-188.30	3.92	2.81	

Fig. S5. ELF of adsorption model with defects.