Electronic Supplementary Information (ESI) for

Efficient Asymmetrical Silicon-Metal Dimer Electrocatalysts for Nitrogen

Reduction Reaction

Chuangwei Liu,¹ Haoren Zheng,¹ Tianyi Wang,^{1, 2} Xiaoli Zhang,³ Zhongyuan Guo,^{2,*} Hao Li ^{2,*}

¹ Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.

² Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.

³ School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

Keywords: *g*-C₃N₄; Si-Metal dimer; ENRR; Electrocatalysis; DFT

*Corresponding author:

Dr. Zhongyuan Guo

Email: zhongyuanguo2022@163.com

Prof. Hao Li

Email: li.hao.b8@tohoku.ac.jp

1. Catalysts models

A 2D (2×2) supercell of *g*-C₃N₄ was built and then optimized to the stable strucutre (a = 14.36, b = 14.35, α = β = 90°, γ = 120°), including the lattice constant. Then, heteroatom (Si or Metal) was substituted into the N_{v1} site and the optimized catalysts models were denoted as Si@C₃N₄ (shown in Fig. 1a) and M@C₃N₄ (including Mo@C₃N₄ and Ru@C₃N₄ as shown in Fig. S8). Additionally, Si and Metal were both substituted into two N_{v1} sites to build asymmetrical dimer catalysts and the optimized catalyst models were denoted as SiM@C₃N₄. The vacuum thickness of catalyst models along the z direction is set to 20 Å to avoid false interactions between periodic structures during geometry optimizations.

Distal pathway *N₂ *N₂H N_2H_2 *NH *N *NH₂ *NH₃ Alternating pathway **UN**U *N₂ *N₂H *NHNH *NHNH, *NH,NH, *NH, *NH₃ **Enzymatic** pathway *NHNH \implies *NHNH₂ \implies *NH₂NH₂ \implies *N₂H *NH₂ *NH₃ *N₂ \rightarrow

2. Scheme of ENRR on Si@C₃N₄

Fig. S1 The widely-proposed ENRR mechanisms, including distal, alternating and enzymatic ones.

3. Interstitial Si-doping into g-C₃N₄

Fig. S2 The configuration of optimized Si-C₃N₄.

The formation energy of the configuration of Si-C₃N₄ is -0.02 eV, derived from the $E_f = E_{Si-C3N4} - \mu_{Si} - E_{g-C3N4}$, where $E_{Si-C3N4}$, and E_{g-C3N4} represent the electronic energies of the catalyst and the pristine g-C₃N₄ substrate, and μ_{Si} refers to the chemical potential of Si, obtained by $1/n * E_{Si-cell}$. In comparison with the above configuration, the Si-doping into the Nv site (N_{v1}), named as Si@C₃N₄, is more energetically favorable.

4. SiM@C₃N₄ models

Fig. S3 The concept catalysts of $SiM@C_3N_4$.

5. Characteristics of SiM@C₃N₄

Catalysts	Adsorption energy <i>E</i> _{ads} /eV		Binding energies	Cohesive energies, E_{co}/eV	Si-M bond	
·	end-on side-on		of dopants, <i>E</i> _b /eV		length/Å	
Si@C ₃ N ₄	0.54	1.09	-6.51	-4.55 (E _{co.Si})	_	
$Mo@C_3N_4$	-0.77	0.01	-6.98	-5.86 (Е _{со.Мо})	—	
$Ru@C_3N_4$	-0.24	—	-7.95	-6.77 (E _{co.Ru})	—	
SiFe@C ₃ N ₄	—	0.16	-13.51	-5.14 (E _{co.Fe})	2.82	
SiCo@C ₃ N ₄	—	-0.04	-13.91	-5.02 (E _{co.Co})	3.23	
SiNi@C ₃ N ₄	—	0.43	-14.08	-4.70 (E _{co.Ni})	2.99	
SiNb@C ₃ N ₄	—	0.12	-15.44	-6.78 (E _{co.Nb})	2.86	
SiMo@C ₃ N ₄	—	-0.38	-14.18	-5.86 (E _{co.Mo})	2.67	
SiRu@C ₃ N ₄	—	-0.29	-14.53	-6.77 (E _{co.Ru})	3.11	
SiRh@C ₃ N ₄	—	0.34	-14.31	-5.66 ($E_{\rm co.Rh}$)	3.24	
SiW@C ₃ N ₄	—	0.06	-15.58	$-8.59 (E_{\rm co.W})$	2.68	
SiRe@C ₃ N ₄	—	_	-15.09	-7.80 ($E_{\rm co.Re}$)	2.67	

Table S1 Characteristics of $SiM@C_3N_4$.

6. N₂ adsorption on SiRe@C₃N₄ model

Fig. S4 N_2 adsorption on SiRe@C_3N_4.

7. Adsorption kinetics of N_2 on SiM@C₃N₄

Fig. S5 The kinetics analysis of N₂ adsorption on SiM@C₃N₄ (inserts are the transition states). It is noticed that the TS was not analyzed for SRe@C₃N₄ because N₂ can merely be activated in the end-on configuration. The 'IS' and 'FS' terms refer to the initial and final states during the adsorption.

8. ENRR mechanisms on dimer catalysts

Fig. S6 The ENRR mechanisms on dimer catalysts.

9. ENRR pathways on SiRu@C₃N₄

Fig. S7 ENRR enzymatic and consecutive pathways on SiRu@C₃N₄.

10. *N₂H on SiMo@C₃N₄ and SiRu@C₃N₄

Fig. S8 The Si site VS. metal site (Mo/Ru) for the adsorption of N_2H : the H⁺/ e^- pair tends to attack the N adatoms bound to the metal site energetically. The dash circles indicate different H adsorption sites on N adatom.

11. Mo@C₃N₄ and Ru@C₃N₄

Fig. S9 The single-atom Mo/Ru catalysts supported on g-C₃N₄, named Mo@C₃N₄ and Ru@C₃N₄.

12. N₂ adsorption on Mo@C₃N₄ and Ru@C₃N₄

Fig. S10 The adsorption configurations of $*N_2$ on Mo@C₃N₄ and Ru@C₃N₄ with N-N bond lengths and energy changes.

13. ENRR on Mo@C₃N₄ and Ru@C₃N₄

Fig. S11 ENRR intermediates along the distal and alternating pathways on (a) $Mo@C_3N_4$ and (b) $Ru@C_3N_4$.

14. Hirshfeld charge and N-N bond length analyses

Catalysts	N-N b	ond/Å	Hirshfeld charges/e		
	End-on	Side-on	End-on	Side-on	
Si@C ₃ N ₄	1.13	1.21	0.06	-0.14	
$Mo@C_3N_4$	1.14	1.16	-0.13	_	
$Ru@C_3N_4$	1.13	_	-0.01	_	
SiMo@C ₃ N ₄	_	1.21	_	-0.20	
SiRu@C ₃ N ₄	_	1.20	_	-0.18	

Table S2 The Hirshfeld charge and N-N bond length analyses towards $*N_2$.

15. DOS and orbital analyses for N_2

Fig. S12 DOS and orbital analyses for N_2 .

From the above DOS image, it is noticed that the 3σ molecular orbital (MO) crosses the Fermi level. This image is produced by DMol³ package, where the HOMO level is automatically corrected to the Fermi level. Therefore, it does not indicate that N₂ possesses metallic properties. Also, we did the orbital analysis shown in the above image, again evidencing the accuracy of DOS collected.

16. Evolution of Hirshfeld charges

Fig. S13 (a, c) Evolution of Hirshfeld charges on $SiMo@C_3N_4$ and $SiRu@C_3N_4$ along the consecutive

pathways; (b, d) Evolution of Hirshfeld charges on $Mo@C_3N_4$ and $Ru@C_3N_4$ along the distal pathway.

17. Energetically favorable configuration of dual Si-M dimer catalysts

Fig. S14 Configurations of SiMo@C₃N₄ and SiRu@C₃N₄ vs. SiMo-C₃N₄ and SiRu-C₃N₄.

Here, we analyzed the formation energies of the above catalysts to evaluate the synthetic availability in labs. The dual-atom SiMo@C₃N₄ and SiRu@C₃N₄ catalysts designed by doping two dopant atoms into Nv1 vacancies are more energetically favorable than directly embedded into the hole of g-C₃N₄.

Concept-catalysts	Si@C ₃ N ₄	Si-C ₃ N ₄	SiMo@C ₃ N ₄	SiRu@C ₃ N ₄	SiMo-C ₃ N ₄	SiRu-C ₃ N ₄
Formation energy/eV	-0.08	-0.02	2.19	1.36	4.04	3.44

Table S3 Analyses of formation energies.

18. Thermodynamics calculated by DFT

Gases	$E_{ m DFT}/ m eV$	ZPE/eV	$\int C_P dT$	TS/eV	G/eV
H ₂	-32.07	0.27	0.09	0.40	-32.11
N_2	-2981.80	0.15	0.09	0.59	-2982.15
NH ₃	-1539.82	0.89	0.10	0.60	-1539.43

Table S4 Thermodynamic quantities for H_2 , N_2 , and NH_3 gases at standard conditions ($N_2 + 3H_2 \rightarrow 2NH_3$).

For the gas molecules, the Gibbs free energy calculation should be performed as follows:

 $\mu = E_{\text{DFT}} + ZPE + \int C_P dT - TS$, where μ , E, and C_P denote the chemical potential, electronic energy, and heat capacity, respectively.

Intermediates	Catalysts (SiMo@C ₃ N ₄)		Catalysts (SiRu@C ₃ N ₄)		Catalysts (Mo@C ₃ N ₄)		Catalysts (Ru@C ₃ N ₄)	
	E _{DFT} /eV	ZPE/eV	E _{DFT} /eV	ZPE/eV	E _{DFT} /eV	ZPE/eV	E _{DFT} /eV	ZPE/eV
*N2	-83069.63	0.20	-83898.67	0.22	-76683.90	0.22	-77512.97	0.22
*N ₂ H	-83085.84	0.55	-83914.68	0.56	-76699.45	0.50	-77528.42	0.51
*N ₂ H ₂	-83102.79	0.91	-83931.17	0.91	-76715.83	0.84	-77544.55	0.84
*N	-81579.12	0.11	-82407.32	0.095	-75192.60	0.10	-76020.32	0.09
*NH	-81595.77	0.40	-82425.16	0.43	-75209.12	0.37	-76037.32	0.36
*NH ₂	-81612.72	0.53	-82442.03	0.75	-75225.72	0.68	-76054.91	0.70
*NH ₃	-81629.54	1.08	-82457.92	0.90	-75242.59	1.06	-76071.55	1.08
*NHNH	-83102.39	0.86	-83931.14	0.86	-76715.42	0.86	-77544.53	0.66
*NHNH ₂	-83118.94	1.22	-83947.86	1.24	-76732.20	0.99	-77561.17	1.18
*NH ₂ NH ₂	-83135.28	1.37	-83963.92	1.38	-76748.51	1.54	-77577.83	1.34

 Table S5 Calculated data for ENRR.