Robust electronic properties of monolayer BeO against molecules adsorption

Hongsheng Liu^{1,2}, Vitaly Ksenevich^{2,3}, Jijun Zhao¹, Junfeng Gao^{1,2*}

- 1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
- 2. Dalian University of Technology and Belarusian State University Joint Institute & Innovation Center, Dalian 116024, China
- 3. Faculty of Physics, Belarusian State University, Nezalezhnastsi av.4, 220030 Minsk, Belarus

email: gaojf@dlut.edu.cn

Figure S1. Top and side views of other possible structures for gas molecules on pristine BeO monolayer. (a) – (d): H_2O on BeO monolayer. (e) – (h): CO_2 on BeO monolayer. The red, green, white and gray balls represent O, Be, H and C atoms, respectively. The shortest distance between the molecule and BeO layer is given indicated by dashed lines. The adsorption energy was given below each structure.

Figure S2. Top and side views of other possible structures for gas molecules on pristine BeO monolayer. (a) – (d): O_2 on BeO monolayer. (e) – (f): N_2 on BeO monolayer. The red, green and blue balls represent O, Be and N atoms, respectively. The shortest distance between the molecule and BeO layer is given indicated by dashed lines. The adsorption energy was given below each structure.

Figure S3. Electronic energy band structures calculated with HSE06 functional: (a) pristine BeO monolayer (b) BeO monolayer with the adsorption of a H_2O molecule.

Figure S4. Spin charge density of the BeO monolayer with the adsorption of O_2 . The red and green balls represent O and Be atoms, respectively. The isosurface level is 0.008 $|e|/bohr^3$.

Figure S5. Electronic energy band structures of BeO monolayer with O single vacancy (a) and Be-O double vacancy (b).

Figure S6. Top and side views of other possible structures for gas molecules on BeO monolayer with Be vacancy (V_{Be}) . (a) – (c): O₂ on BeO monolayer with V_{Be} . (d) – (e): N₂ on BeO monolayer with V_{Be} . (g) – (i): CO₂ on BeO monolayer with V_{Be} . (j): H₂O on BeO monolayer with V_{Be} . The red, green, white, gray and blue balls represent O, Be, H, C and N atoms, respectively. The shortest distance between the molecule and BeO layer is given indicated by dashed lines. The adsorption energy was given below each structure.

Figure S7. Snapshot structures of BeO monolayer with dissociated water adsorption on one Be vacancy. The red, green and white balls represent O, Be and H atoms, respectively.

Figure S8. Top and side views of possible structures for gas molecules on BeO monolayer with O vacancy (V_0). (a): N_2 on BeO monolayer with V_0 . (b) – (g) CO₂ on BeO monolayer with V_0 . The red, green, gray and blue balls represent O, Be, C and N atoms, respectively. The shortest distance between the molecule and BeO layer is given indicated by dashed lines. The adsorption energy was given below each structure.