Supporting Information

Unravelling the destabilization potential of Ellagic acid on α-Synuclein fibrils using molecular dynamics simulations

Opinder Kaur Mankoo,^[a] Anupamjeet Kaur,^{[a]#} Deepti Goyal^{*[b]} and Bhupesh Goyal^{*[c]}

- [a] Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib–140406, Punjab, India
- [b] Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India
- [c] School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala–147004, Punjab, India

*Corresponding author

Email address: deeptig@iitbombay.org; bhupesh@iitbombay.org

[#]Present address

National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India

Table of contents

Figure S1: The input conformation of α -Syn fibril and EA for the docking studies is S3 shown in the left panel. The best-docked pose of EA with α -Syn fibril (right panel). The α -Syn fibril is shown in cartoon and EA is displayed in the stick representation.

Figure S2: The top ten docked conformations of EA with α -Syn fibril. S4

Figure S3: The 2D interaction maps displaying hydrogen bonds and hydrophobic S5 contacts in the top ten docked conformations of EA with α -Syn fibril. The green dashed line depicts hydrogen bonds between α -Syn fibril and EA.

Figure S4: The conformational snapshots of MD trajectory of α -Syn fibril at different S6 time points in the absence and presence of EA are shown in panel a, and b, respectively.

sFigure S5: The RMSD of α -Syn fibril alone (panel a) and α -Syn fibril + EA (panel S7 b) as a function of simulation time for the repeat simulations with different initial velocities. The RMSF of the residues of α -Syn fibril in the absence and presence of EA for the repeat simulations are shown in panel c, and d, respectively.

Figure S6: The time-dependent evolution of number of contacts between α -Syn fibril S8 and EA.

Figure S7: The 2D interaction map displaying the hydrophobic contacts and S9 hydrogen bonds in the representative conformations of the three most-populated conformational clusters C1', C2' and C3' of α -Syn fibril + EA are displayed in panel a, b, and c, respectively.

Figure S8: The RMSD of chain H and chain J of α -Syn fibril in the absence and S10 presence of EA during simulation are shown in panel a, and b, respectively.

Figure S1: The input conformation of α -Syn fibril and EA for the docking studies is shown in the left panel. The best-docked pose of EA with α -Syn fibril (right panel). The α -Syn fibril is shown in cartoon and EA is displayed in the stick representation.

Docked	Binding	Docked	Docked	Binding	Docked
pose	energy (kcal/mol)	conformation	pose	energy (kcal/mol)	conformation
1	-6.14		6	-6.04	
2	-6.07		7	-6.04	
3	-6.07	- Sign	8	-6.03	S
4	-6.07	S	9	-6.03	
5	-6.06		10	-6.02	S

Figure S2: The top ten docked conformations of EA with α -Syn fibril.

Docked pose 10

Figure S3: The 2D interaction maps displaying hydrogen bonds and hydrophobic contacts in the top ten docked conformations of EA with α -Syn fibril. The green dashed line depicts hydrogen bonds between α -Syn fibril and EA.

Figure S4: The conformational snapshots of MD trajectory of α -Syn fibril at different time points in the absence and presence of EA are shown in panel a, and b, respectively.

Figure S5: The RMSD of α -Syn fibril alone (panel a) and α -Syn fibril + EA (panel b) as a function of simulation time for the repeat simulations with different initial velocities. The RMSF of the residues of α -Syn fibril in the absence and presence of EA for the repeat simulations are shown in panel c, and d, respectively.

Figure S6: The time-dependent evolution of number of contacts between α -Syn fibril and EA.

Figure S7: The 2D interaction map displaying the hydrophobic contacts and hydrogen bonds in the representative conformations of the three most-populated conformational clusters C1', C2' and C3' of α -Syn fibril + EA are displayed in panel a, b, and c, respectively.

Figure S8: The RMSD of chain H and chain J of α -Syn fibril in the absence and presence of EA during simulation are shown in panel a, and b, respectively.