Exploring the interaction sites in glucose and galactose using phenol as a probe

ELECTRONIC SUPPLEMENTARY INFORMATION

Paúl Pinillos‡, Ander Camiruaga‡, Fernando Torres-Hernández, Francisco J. Basterrechea, Imanol Usabiaga* and José A. Fernández*

^a Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), B^o Sarriena s/n, 48940 Spain. ‡ These authors contributed equally to this work.

*Correspondence: i.usabiaga@outlook.es, josea.fernandez@ehu.es

Figure S1. Comparison between the experimental IDIR spectrum of β -PhGlc·PhOH complex and the computational simulations for the five most stable structures at M062x/6-311++G(d,p) level.

Figure S2. Comparison between the experimental IDIR spectrum of β -PhGlc·PhOH complex and the computational simulations for the five most stable structures at B3LYP(D3)/6-311++G(d,p) level.

Figure S3. Comparison between the experimental IDIR spectrum for β -PhGal·PhOH complex and the computational simulations for the five most stable structures at M062X/6-311++G(d,p) level.

Figure S4. Comparison between the experimental IDIR spectrum for β -PhGal·PhOH complex and the computational simulations for the five most stable structures at B3LYP(D3)/6-311++G(d,p) level.

Figure S5. Comparison between the experimental IDIR spectrum for β -MeGlc·PhOH complex and the computational simulations for the five most stable structures at M062X/6-311++G(d,p) level.

Figure S6. Comparison between the experimental IDIR spectrum for β -MeGlc·PhOH complex and the computational simulations for the five most stable structures at B3LYP(D3)/6-311++G(d,p) level.

Figure S7. Comparison between the experimental IDIR spectrum for β -MeGal·PhOH complex and the computational simulations for the five most stable structures at M062X/6-311++G(d,p) level.

Figure S8. Comparison between the experimental IDIR spectrum for β -MeGal·PhOH complex and the computational simulations for the five most stable structures at B3LYP(D3)/6-311++G(d,p) level.

Figure S9. Comparison between the experimental IDIR spectrum for α -MeGlc·PhOH complex and the computational simulations for the five most stable structures at M062X/6-311++G(d,p) level.

Figure S10. Comparison between the experimental IDIR spectrum for α -MeGlc·PhOH complex and the computational simulations for the five most stable structures at B3LYP(D3)/6-311++G(d,p) level.

Figure S11. Comparison between the experimental IDIR spectrum for α -MeGal·PhOH complex and the computational simulations for the five most stable structures at M062X/6-311++G(d,p) level.

Table S1. Relative Gibbs energies for the most stable conformers of each family of β -PhGlc·PhOH complex. Values include ZPE and BSSE corrections.

	FAMILY	M062X		B3LYP		
LABEL		∆G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	∆G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	RMSD (NO H ATOMS)
β-PhGlc·PhOH_01	HO6·HOPh 1	0.0	3.1	0.0	1.8	0.08
β- PhGlc∙PhOH_02	O5·HOPh_O6H·OHPh_1	0.7	1.1	2.1	2.7	0.13
β- PhGlc·PhOH_03	O4H·OHPh_HO6·HOPh_1	4.1	4.0	6.0	4.8	0.19
β- PhGlc∙PhOH_04	HO2·HOPh_O3H·OHPh_1	5.2	2.8	5.4	3.2	0.17
β- PhGlc·PhOH_05	HO3·HOPh_O4H·OHPh_1	5.3	1.2	5.7	2.6	0.24
β- PhGlc·PhOH_06	O6H·OHPh_1	5.8	1.9	6.0	0.2	0.27
β- PhGlc∙PhOH_07	O1·HOPh_1	6.0	4.9	7.8	4.6	0.23
β- PhGlc·PhOH_08	O2H·OHPh_1	6.2	6.7	9.9	7.9	0.16
β- PhGlc∙PhOH_09	HO2·HOPh_1	6.3	8.0	7.4	5.2	0.37
β- PhGlc·PhOH_10	HO6·HOPh_1	0.0	3.1	0.0	1.8	0.08

Figure S13. Most stable conformers of β -PhGlc·PhOH complex computed at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level. Energies inside brackets are given in kJ/mol.

Figure S14. Comparison between the experimental IDIR spectrum for β -PhGlc·PhOH complex and the computational simulations for the ten most stable structures at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level.

	FAMILY	M062X		B3LYP		
LABEL		∆G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	∆G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	RMSD (NO H ATOMS)
β -PhGal·PhOH_01	HO6·HOPh_1	0.0	3.8	0.3	3.5	0.07
β- PhGal·PhOH_02	O5·HOPh_O6H·OHPh_1	0.1	0.0	1.7	2.9	0.13
β- PhGal·PhOH_03	O4H'OPhH'O1_01	2.2	4.2	6.0	9.3	0.13
β - PhGal·PhOH_04	OPhH [.] O4_01	4.5	8.3	6.5	10.2	0.09
β - PhGal·PhOH_05	OPhH [.] O2_01	4.5	8.2	5.5	8.4	0.10
β - PhGal·PhOH_06	O6H·OHPh_1	5.2	6.0	8.3	11.1	0.16
β - PhGal·PhOH_07	O3H [.] OPhH [.] O2_01	6.3	3.3	7.4	5.3	0.18
β- PhGal·PhOH_08	O2H·OHPh	7.4	7.9	11.7	10.9	0.17
β - PhGal·PhOH_09	O6H'OPhH'O1	8.6	9.0	7.4	5.2	1.07***
β- PhGal·PhOH_10	OPhH [.] O1_01	9.2	8.3	10.1	8.5	0.19

Table S2. Relative Gibbs energies for the most stable conformers of each family of β -PhGal·PhOH complex. Values include ZPE and BSSE corrections.

Figure S15. Most stable conformers of β -PhGal·PhOH complex computed at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level. Energies inside brackets are given in kJ/mol.

Figure S16. Comparison between the experimental IDIR spectrum for β -PhGal·PhOH complex and the computational simulations for the ten most stable structures at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level.

		M062X		B3LYP		
LABEL	FAMILY	Δ G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	∆G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	(NO H ATOMS)
β-MeGlc∙PhOH_01	HO6·HOPh_1	0.0	1.8	2.4	1.8	0.28
β-MeGlc∙PhOH_02	O4H·OHPh_HO6·HOPh	0.2	2.8	2.2	4.8	0.16
β-MeGlc∙PhOH_03	HO2·HOPh_O3H·OHPh	2.5	3.8	1.5	4.7	0.19
β-MeGlc∙PhOH_04	O1·HOPh_O2H·OHPh	3.1	1.3	1.7	3.2	0.14
β-MeGlc∙PhOH_05	HO3·HOPh_O4H·OHPh	3.2	2.2	1.6	2.0	0.21
β -MeGlc·PhOH_06	O5·HOPh_O6H·OHPh	4.2	4.6	1.9	0.0	0.42
β -MeGlc·PhOH_07	O1·HOPh	4.6	6.5	7.5	8.1	0.12
β-MeGlc∙PhOH_08	HO2·HOPh	4.6	5.2	5.3	6.6	0.18
β-MeGlc∙PhOH_09	HO4·HOPh	6.6	5.5	5.7	3.6	0.08
β-MeGlc∙PhOH_10	HO3·HOPh	6.6	7.6	5.1	5.6	0.28

Table S3. Relative Gibbs energies for the most stable conformers of each family of β -MeGlc·PhOH complex. Values include ZPE and BSSE corrections.

Figure S17. Most stable conformers of β -MeGlc·PhOH complex computed at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level. Energies inside brackets are given in kJ/mol. The global minimum at B3LYP(D3)/6-311++G(d,p) level corresponds to an isomer with different relative orientations of the two molecules than the global minimum obtained using M062X/6-311++G(d,p)

Figure S18. Comparison between the experimental IDIR spectrum for β -MeGlc·PhOH complex and the computational simulations for the ten most stable structures at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level.

		M	M062X		B3LYP	
LABEL	FAMILY	∆G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	∆G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	RMSD (NO H ATOMS)
β -MeGal·PhOH_01	HO6·HOPh	0.0	2.7	1.4	4.6	0.16
β -MeGal·PhOH_02	O5·HOPh_O6H·OHPh	2.2	0.8	3.5	4.8	0.06
β -MeGal·PhOH_03	HO4·HOPh	2.5	8.3	8.2	11.4	0.12
β -MeGal·PhOH_04	HO2·HOPh	4.8	7.4	8.1	6.9	0.29
β -MeGal·PhOH_05	HO4·HOPh_O6H·OHPh	5.4	3.9	6.1	7.9	0.09
β -MeGal·PhOH_06	O1·HOPh	5.4	6.2	5.6	8.1	0.17
β -MeGal·PhOH_07	O1·HOPh_O6H·OHPh	5.4	6.5	4.9	7.5	0.24
β -MeGal·PhOH_08	HO2·HOPh_O3H·OHPh	5.7	1.8	7.2	6.1	0.19
β -MeGal·PhOH_09	O1·HOPh_O4H·OHPh	5.9	8.0	11.5	15.4	0.13
β-MeGal·PhOH_10	HO6·HOPh	0.0	2.7	1.4	4.6	0.16

Table S4. Relative Gibbs energies for the most stable conformers of each family of β -MeGal·PhOH complex. Values include ZPE and BSSE corrections.

Figure S19. Most stable conformers of β -MeGal·PhOH complex computed at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level. Energies inside brackets are given in kJ/mol. The global minimum at B3LYP(D3)/6-311++G(d,p) level corresponds to an isomer with different relative orientations of the two molecules than the global minimum obtained using M062X/6-311++G(d,p)

Figure S20. Comparison between the experimental IDIR spectrum for β -MeGal·PhOH complex and the computational simulations for the ten most stable structures at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level.

		M062X		B3LYP		
LABEL	FAMILY	Δ G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	∆G (0K) (kJ/mol)	∆G (298K) (kJ/mol)	RMSD (NO H ATOMS)
α -MeGlc·PhOH_01	HO6·HOPh	0.0	5.7	0.0	0.4	0.12
α -MeGlc·PhOH_02	HO3·HOPh_O4H·OHPh	3.8	5.5	4.0	0.8	0.21
α -MeGlc·PhOH_03	O4H·OHPh_HO6·HOPh	3.8	7.6	6.4	4.3	0.17
α -MeGlc·PhOH_04	HO4·HOPh	5.3	9.3	6.0	2.7	0.12
α -MeGlc·PhOH_05	HO2·HOPh	6.6	11.1	10.4	7.6	0.08
α -MeGlc·PhOH_06	HO2·HOPh_O3H·OHPh	0.0	5.7	0.0	0.4	0.12
α -MeGlc·PhOH_07	HO3·HOPh	3.8	5.5	4.0	0.8	0.21
α -MeGlc·PhOH_08	O5·HOPh_O6H·OHPh	3.8	7.6	6.4	4.3	0.17
α -MeGlc·PhOH_09	O1·HOPh_O2H·OHPh	5.3	9.3	6.0	2.7	0.12
α -MeGlc·PhOH_10	HO4·HOPh_O6H·OHPh	6.6	11.1	10.4	7.6	0.08

Table S5. Relative Gibbs energies for the most stable conformers of each family of α -MeGlc·PhOH complex. Values include ZPE and BSSE corrections.

Figure S21. Most stable conformers of α -MeGlc·PhOH complex computed at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level. Energies inside brackets are given in kJ/mol.

Figure S22. Comparison between the experimental IDIR spectrum for α -MeGlc·PhOH complex and the computational simulations for the ten most stable structures at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level.

		M062X		B3LYP		
LABEL	FAMILY	∆G (0K)	∆G (298K)	∆G (0K)	∆G (298K)	RMSD (NO H ATOMS)
		(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	
α -MeGal·PhOH_01	HO6·HOPh	0.0	0.0	0.0	0.0	0.11
α -MeGal·PhOH_02	HO2·HOPh	5.3	4.8	7.0	3.0	0.14
α -MeGal·PhOH_03	O5·HOPh_O6H·OHPh	7.6	6.2	5.6	3.6	0.09
α -MeGal·PhOH_04	HO4·HOPh_O6H·OHPh	8.6	5.4	6.2	4.3	0.10
α -MeGal·PhOH_05	HO3·HOPh_O4H·OHPh	9.4	5.1	7.8	4.4	0.15
α -MeGal·PhOH_06	HO4·HOPh	9.7	8.4	9.0	6.2	0.12
α -MeGal·PhOH_07	HO2·HOPh_O3H·OHPh	11.0	6.4	7.9	1.6	0.39
α -MeGal·PhOH_08	HO3·HOPh	12.4	8.8	11.9	7.0	0.11
α -MeGal·PhOH_09	O2H·OHPh_HO3·HOPh	12.4	9.0	12.5	9.3	0.14
α -MeGal·PhOH_10	O5·HOPh	12.7	3.3	9.9	4.5	0.14

Table S6. Relative Gibbs energies for the most stable conformers of each family of α -MeGal·PhOH complex. Values include ZPE and BSSE corrections.

Figure S23. Most stable conformers of α -MeGal·PhOH complex computed at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level. Energies inside brackets are given in kJ/mol.

Figure S24. Comparison between the experimental IDIR spectrum for α -MeGal·PhOH complex and the computational simulations for the ten most stable structures at B3LYP(D3)/6-311++G(d,p) and M062X/6-311++G(d,p) level.

