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1. Supplementary Tables and Figures

TABLE S1. Reported exchange current density j0 (mA cm-2) and ΔGH for catalysts in Fig. 1.
Catalyst △GH (eV) Reference j0 (mA cm-2) Reference

Pt
Co
Re
Pd
Rh
Ir

Cu
Ni

Au (111)
Ag (111)
Nb (110)
Mo (110)
W (110)

VC
MoC
Mo2C
MoP

2H-MoS2-VS

1T-WS2(6.25%)
2H-MoS2-edge

  -0.03
-0.27
-0.32
-0.14
-0.1
0.03
0.19
-0.27
0.45
0.51
-0.56
-0.37
-0.43
0.314
0.14
-0.24
-0.389
0.02
0.28
0.09
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TABLE S2. Hydrogen coverage, TOF and exchange current density j0 for catalysts in Fig. 4.
Catalyst Hydrogen coverage TOF (s-1) j0 (mA cm-2) Reference

Pt (111) 87.5%→100% / 2.344 10

Pd (111) 87.5%→100% / 0.47 16

1T-MoS2-bp 25.0%→37.5% 0.02 / 17

MoC(001) 75%→83% / 0.033 13

2H-MoS2-edge 0→25.0% 0.013 / 15

1T-WS2-bp 0→6.25% 0.043 / 8

2H-VS2-bp 0→12.5% / / 18

2H-MoS2-Vs 1 H → 2 H 0.06 / 19

Pt(pH=13) 0→25% / 0.08 20

Ir(pH=13) 0→33.3% / 0.66 21

N-doped graphene 83.33%→100% / 0.00007 22
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TABLE S3. The calculated hydrogen desorption barriers (ΔG‡
des) and their corresponding rate-

determining steps (RDS)
2H-VS2/H2O 1T-MoS2/H2O 2H-MoS2-VS/H2O Pt(111)/H2O

ΔG‡
des (eV) 1.05 0.95 0.80 0.67

RDS Heyrovsky Tafel Heyrovsky Tafel
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Fig. S1. Structural evolution and reaction energy pathway at the 2H-VS2/H2O interface. (a) the Volmer reaction, (b) 
the Heyrovsky reaction, (c) the Tafel reaction and (d) linearly fitted Tafel reaction barriers at different potentials. 
Structures of initial state (IS) and final state (FS) are given for each of the reactions. For the Volmer and the 
Heyrovsky reactions, the initial states have an electrode potential of USHE = -0.03 V. For the Tafel reaction, the initial 
state has an electrode potential of USHE = -0.65 V.18 All the energies along the reaction pathways are corrected using 
the charge extrapolation scheme.23 Protons participating in the reactions are labelled by green. Imaginary frequencies 
for transition states (TS) are given in parentheses.
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Fig. S2. Structural evolution and reaction energy pathway at the 1T-MoS2/H2O interface. (a) the Volmer reaction, 
(b) the Heyrovsky reaction, (c) the Tafel reaction and (d) linearly fitted Heyrovsky reaction barriers at different 
potentials. Structures of IS and FS are given for each of the reactions. For the Volmer reaction, the IS has an electrode 
potential of USHE = 0.15 V. For the Heyrovsky reaction, the IS has an electrode potential of USHE = -0.63 V. The IS 
of the Tafel reaction has an electrode potential of USHE = 0.09 V.24 All the energies along the reaction pathways are 
corrected using the charge extrapolation scheme.23 Protons participating in the reactions are labelled by green. 
Imaginary frequencies for transition states (TS) are given in parentheses.
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Fig. S3. Structural evolution and reaction energy pathway at the 2H-MoS2-VS/H2O interface. (a) Proton transfer from 
a surface O site to water, (b) the Vomer reaction and Tafel reaction, (c) the Heyrovsky reaction. Structures of IS and 
FS are given for each of the reactions. The initial potential is USHE = -0.20 V.25 All the energies along the reaction 
pathways are corrected using the charge extrapolation scheme.23 Protons participating in the reactions are labelled 
by green.
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Fig. S4. Structural evolution and reaction energy pathway at the Pt(111)/H2O interface. (a) The Tafel reaction and 
(b) the Heyrovsky reaction. Structures of IS and FS are given for each of the reactions. The IS has an electrode 
potential of USHE = 0 V. All the energies along the reaction pathways are corrected using the charge extrapolation 
scheme.23 Protons participating in the reactions are labelled by green. Imaginary frequencies for transition states (TS) 
are given in parentheses.
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Fig. S5. Slab surface models for the catalysts discussed in Fig. 4. For the 2H-MoS2 edge structure, we give the top 
and side views of the models. For all the structures, H and O atoms are shown with grey and red spheres. 
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Fig. S6. Hydrogen adsorption energy ΔGH as a function of hydrogen coverage on MoC(001).
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2. Calculations Details for Free Energies

The free energy data shown in Fig. S1 were obtained by correcting the DFT calculated energies with 
the contribution of zero-point energies and entropies. 

.  (S1)∆𝐺0 = ∆𝐸+ ∆𝑍𝑃𝐸 ‒ 𝑇∆𝑆

Zero-point energies were obtained by calculating the Hessian matrix using the finite difference 
method.26 We corrected zero-point energies for excess protons involving hydroniums and adsorbed 
protons. By examining a series of interfacial structures with different proton concentrations and water 
networks, we found that the zero-point energy contribution of a proton to the total free energy was 
rather small (ca. 2 meV). Consequently, we ignored zero-point energy correction for all free energy 
data. 
Entropic correction was performed for both hydroniums and adsorbed protons, following the way of 
Norskov.27 The entropy for an adsorbed proton was taken to be zero because the vibrational entropy 
was quite small.27 Hydroniums were also addressed in a similar way because they were bound to an 
ice-like water network with little freedom. This leads to an entropic change of ca. -0.20 eV for a 
proton, which is then normalized to be ca. -0.01 eV for one water molecule. 
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3. Evaluation of hydrogen coverages under the SHE condition.
The most reliable method to determine H%SHE for a catalyst is to calculate the surface or interfacial 

Pourbaix diagram. This has been done for 1T-MoS2, 2H-VS2, 2H-MoS2-Vs and Pt(111) surfaces and 
the results are collected in Table S2. For the rest systems in Fig. S2, it is computationally too expensive 
to obtain all the Pourbaix diagrams. Instead, one can approximate the H%SHE by assuming that the 
permitted maximum hydrogen coverage corresponds to a ΔGH of ca. 0.2 eV based on the previous 
studies.24, 28, 29 This can greatly save the computational cost and would not lead to large errors. Using 
this principle, we give a detailed discussion for the rest catalysts in this section and list the results in 
Table S2. 

1T-WS2 adsorbs H rather weakly, with a ΔGH =0.37 eV at 1/8 hydrogen coverage, i.e., the lowest 
hydrogen coverage for this system. Therefore, we approximately give H%SHE = 1/8 though the 
practical coverage is perhaps lower. The error is represented by the error bar in Fig. 4b.

The H%SHE for the MoC(001) surface is determined by calculating the hydrogen coverage 
dependent ΔGH, which is shown in Fig. S3. We estimate that the H%SHE lies in between 83% and 92% .

2H-MoS2-edge has a H%SHE = 0.25, which has been reported by a previous experiment.9
Because hydrogen adsorption on Pd(111) is stronger than that on Pt(111) (cf. Fig. 1), one can 

reasonably estimate that the H%SHE is 100%.
Previous theoretical and experimental studies demonstrate that the HER on Pt(111) under alkaline 

conditions is governed by water dissociation and the surface has OH groups adsorbed.30, 31We calculate 
the ΔGH for adsorption of one H in the presence of two adsorbed OH groups and find that ΔGH = 0.22 
eV, which approximately corresponds to the permitted maximum hydrogen coverage aforementioned.

Previous studies suggest that Ir(111) has stronger OH adsorption ability than Pt(111).30 We 
therefore consider adsorption of one H in the presence of three adsorbed OH groups, which generates 
a ΔGH = -0.15 eV. Considering higher OH coverages would move the result to the positive side, which 
is reflected by the error bar in Fig. 4b.

Au(111) adsorbs H atoms very weakly, we therefore consider the lowest hydrogen coverage of 1/8 
as the H%SHE, which generates a ΔGH = 0.50 eV, close to a previous prediction of 0.45 eV.

ZnO(001) has not been reported as an active catalyst and therefore it is meaningless to discuss the 
H%SHE. We use the model in Fig. S2 to represent an inert system with a high-χ for comparisons. 
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4. Reaction pathways for the interfacial systems in Table 1

In Table 1 and Fig. 3, we exhibit hydrogen desorption barriers for four interfacial systems. Here, 
we give the computational details of the reaction pathways in Fig. S1-S4, from which we can identify 
the rate-determining steps (RDS). 

In Fig. S1, we show the three elementary reaction steps at the interface of 2H-VS2/H2O, i.e., the 
Volmer and Heyrovsky reactions at USHE = -0.03 V and the Tafel reaction at USHE = -0.65 V. The 
reason why we do not give the result of the Tafel reaction around the equilibrium potential is that the 
surface hydrogen coverage under the SHE condition is only 1/8, which do not favor the direct Tafel 
manner. From Fig. S1, one can see that the Volmer reaction takes place when a proton in the water 
layer is transferred to the catalyst surface. This takes a rather small barrier of 0.21 eV, which means 
that hydrogen adsorption is very easy. The Heyrovsky reaction occurs when a proton in the water layer 
combines with a hydrogen atom adsorbed on the surface to form a H2 molecule. The barrier is as large 
as 1.05 eV, indicating that hydrogen desorption is probably the RDS. By calculating the Tafel barriers 

at several different potentials, we obtain a linear ΔG‡ ~ USHE dependence. By extrapolating the 

dependence to the zero potential, we obtain a large Tafel barrier of 1.20 eV under the SHE condition, 
which is much larger than Heyrovsky barrier. This indicates that the Heyrovsky step is the RDS. The 
detailed analysis of the reaction mechanism could be found in Ref. 18. 

Fig. S2 shows the HER reaction pathway at the interface of 1T-MoS2/H2O. We calculate the 
minimum energy pathways around USHE = 0 V for the Volmer and the Tafel reactions. For the 
Heyrovsky reaction, we only give a result at USHE = -0.63 V because no hydroniums are available for 
supercells of the current size around the zero potential. We find that both the Heyrovsky and the Tafel 
steps are preceded by a hydrogen atom diffusion from a surface low-S site to a neighboring high-S 
site. This is because H adsorption on the high-S site is relatively weaker. Diffusion to a high-S site can 
decrease the overall desorption barrier. Fig. S2 (b) and (c) show that the barriers for both the diffusion 
steps are smaller than those of the desorption steps. Therefore, the overall Tafel barrier is determined 
to be 0.95 eV, whereas the overall Heyrovsky barrier is 1.20 eV. By calculating the Heyrovsky barriers 
at several different potentials, one can obtain the barrier at the zero potential by a linear extrapolation 
(Fig. S2 (d)). This generates a Heyrovsky barrier of 1.28 eV, much larger than the Tafel barrier. This 
means that the Tafel reaction is the RDS. The detailed analysis of the reaction mechanism could be 
found in Ref. 24.

Fig. S3 shows the HER reaction pathway at a potential of USHE = -0.20 V at the interface of 2H-
MoS2-VS/H2O. First, the initial structure (Fig. 2 (c)) undergoes a low-barrier (0.15 eV) reversed 
Volmer reaction, in which a hydrogen atom transfers from the surface O site to the water layer (Fig. 
S3 (a)). This provides a hydronium ion in water and facilitates the subsequent reactions. Second, 
hydrogen desorption could take place through two pathways, as shown in Fig. S3 (b) and (c). The first 
one is a two-step process consisting of a Volmer step and Tafel step. In this pathway, a proton in water 
is transferred to a S vacancy which has already adsorbed a hydrogen atom. This step takes a large 
barrier of 1.14 eV. Then the two hydrogen atoms in the S vacancy combine into a H2 molecule via a 
Tafel manner with a small barrier of 0.55 eV. The overall reaction barrier for this pathway is 1.14 eV. 
The second pathway is single-step Heyrovsky process, in which a proton in water combines with a 
hydrogen atom adsorbed on a S vacancy to form a H2 molecule. This process has a reaction barrier of 
0.80 eV, much smaller than that of the first one. Consequently, one can conclude that the Heyrovsky 
route is the RDS. The detailed analysis of the reaction mechanism could be found in Ref. 25.

Previous theoretical studies have demonstrated that hydrogen coverage on Pt(111) is 100% under 
the SHE condition.32, 33 Besides, hydrogen atoms prefer to adsorb on top sites at HER potentials.32 
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Based on these characteristics, we constructed the interfacial model and calculated the free energy 
barriers of the Tafel and the Heyrovsky reactions at USHE = 0 V, as shown in Fig. S4. The calculated 
Tafel barrier is 0.67 eV, in reasonable agreement with the 0.70 eV estimated from the experimental j0 
of 2.344 mA cm-2.10 In contrast, the Heyrovsky barrier is calculated to be 1.37 eV, which is too large 
for the reaction to occur. Because surface H atoms are underpotentially adsorbed, we only calculate 
the desorption barrier. 
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