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I. REORGANIZATION ENERGIES IN
MOLECULAR SOLVENTS

The details of calculations of reorganization energies in
15 molecular solvents are presented here. The adopted
geometry of the donor-acceptor complex is two spheres
with the radii RD = RA = R0 separated by the dis-
tance R between their geometrical centers. The van der
Waals radii of the solutes are modified in microscopic
theories by the corresponding solute-solvent hard sphere
radii R1. In the simplest additive scheme, they can be ap-
proximated as sums of the solute and solvent hard-sphere
radii R1 = R0+σs/2, where σs is the solvent hard-sphere
diameter. Alternatively, R1 can be calculated from pro-
tocols established in the liquid-state theories.1,2 Given
this definition, the distance between the solute centers R
is assumed to exceed 2R1 for outer-sphere electron trans-
fer. The electric field of the donor-acceptor complex in
reciprocal space becomes3

∆ẼL
0 (k) =

4πiek

k2
j0(kR1)

[
1− eik·R

]
, (S1)

where the subscript “L” indicates the longitudinal (pro-
portional to the reciprocal space wave vector k) projec-
tion of the field; j0(x) is the spherical Bessel function
of zeroth order.4 The solvent reorganization energy is
obtained3,5 by integrating the field squared with the lon-
gitudinal susceptibility function χL(k)

λ =
1

2

∫
dk

(2π)3
χL(k)|∆ẼL

0 |2. (S2)

By substituting eqn (S1), one obtains

λ = 8e2
∫ ∞

0

j0(kR1)
2 [1− j0(kR)]χL(k)dk. (S3)

This equation is used to calculate the solvent reorganiza-
tion energies for 15 molecular solvents with their proper-
ties listed in Table S1.

A. Solvent properties

The physical properties of molecular polar liquids re-
quired to perform calculations are listed in Table S1.
They include the static dielectric constant ϵs, the squared

a)Electronic mail: dmitrym@asu.edu

refractive index ϵ∞ = n2
D, the hard-sphere diameter

σs,6 and the molecular dipole moment m. The effec-
tive condensed-matter dipole moment m′ is calculated
according to the Wertheim’s theory.7 The dipole moment
is modified due to the fact that the permanent dipole
m and the induced dipole p at a given molecule add
up to produce a higher averaged value specified by m′.
The liquid polarity is specified by the effective polarity
parameter8 yeff (Gaussian units)

yeff = (4π/9)βρ⟨(m+ p)2⟩, (S4)

where ρ is the number density of the liquid and β =
(kBT )

−1. The molecular polarizability α required to de-
termine m′ in the mean-field Wertheim theory is taken
from ϵ∞ according to the Clausius-Mossotti equation.
The values of yeff and the polarity parameter

y′ = (4π/9)βρ(m′)2 (S5)

based on m′ are also listed in Table S1. This latter pa-
rameter becomes

y = (4π/9)βρm2 (S6)

for nonpolarizable liquids. Also listed in the Table are
the Pekar parameter c0 and the k = 0 values of the lon-
gitudinal susceptibility

4πχL(0) = q2
(
1− ϵ−1

s

)
, (S7)

where

q =
ϵ∞ + 2

3ϵ∞
. (S8)

B. Nonlocal susceptibility functions

The longitudinal susceptibility function is
parametrized with the structure factor SB(k, 2ξ

L)
from the mean-spherical approximation (MSA) for
dipolar fluids.9 Given that the dipolar structure factor
tends to unity at k → ∞, the longitudinal susceptibility
function is the product of the k → ∞ limit χ(∞) and
the MSA structure factor5

χL(k) = χ(∞)SB(k, 2ξ
L). (S9)

The MSA solution gives the orientational structure fac-
tors in terms of the Baxter function Q(kσs, ξ) obtained as
the solution of Percus-Yevick integral equations for hard
sphere fluids2,10

SB(kσs, ξ) = |Q(kσs, ξ)|−2, (S10)
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Table S1. Physical parameters of polar solvents used in the calculations

Solvent ϵ∞ ϵs c0 4πχL(0) σs, Å m, D y′ yeff
formamide 2.091 109.5 0.469 0.421 3.99 3.37 11.52 11.78
methanol 1.760 35.87 0.540 0.493 3.77 2.87 7.049 7.251
ethanol 1.848 24.55 0.500 0.462 4.41 1.66 1.333 1.553
n-propanol 1.915 20.33 0.473 0.442 4.89 3.09 4.40 4.63
t-butanol 1.919 12.47 0.441 0.426 5.3 1.66 0.752 0.987
water 1.776 78.46 0.550 0.496 2.87 1.834 6.53 6.74
PCa 2.014 64.92 0.481 0.435 5.3 4.94 10.78 11.03
ETGb 2.047 40.7 0.464 0.424 4.621 2.31 3.278 3.536
nitromethane 1.902 32.7 0.495 0.453 4.36 3.56 7.188 7.419
acetone 1.839 20.7 0.496 0.461 4.78 2.69 3.179 3.397
acetonitrile 1.798 35.94 0.528 0.482 4.14 3.92 10.51 10.72
benzonitrile 2.326 25.2 0.390 0.369 5.72 4.18 7.19 7.49
pyridine 2.271 12.91 0.363 0.363 5.15 2.37 2.509 2.806
1,1-dichloroethane 1.997 10.0 0.401 0.401 5.09 1.82 1.109 1.358
chlorophorm 2.079 4.9 0.277 0.340 5.05 1.15 0.394 0.659

a PC=propylene carbonate
b ETG=ethylene glycol

where

Q(kσs, ξ) =1− 12ξ

∫ 1

0

eikσst[
a(ξ)(t2 − 1)/2− b(ξ)(t− 1)

]
dt

(S11)

and a(ξ) = (1 + 2ξ)/(1 − ξ)2, b(ξ) = −3ξ/(2(1 − ξ)2).
The longitudinal structure factor of the MSA solution is
obtained by setting ξ = 2ξL (eqn (S9)).

The polarity parameter ξL in the MSA structure factor
is defined to satisfy the k = 0 limit in eqn (S7)

(1− 2ξL)4

(1 + 4ξL)2
=

χL(0)

χ(∞)
. (S12)

The k → ∞ asymptote for the susceptibility function is5

χm(∞) =
3y

16π

(
1 +

y′

y

)2

, (S13)

where y′ and y are given by eqn (S5) and (S6), respec-
tively. The calculation of the susceptibility function re-
quires four input parameters: ϵ∞, ϵs, y′, and y. The
solvent hard-sphere diameter σs is additionally needed
to calculate λ in eqn (S3).

II. DERIVATION OF EQN (55)

The free energy invested in transferring electron is
equal to the free energy of solvating an effective solute
retaining all the repulsive and nonpolar interactions of
the actual donor-acceptor complex, but interacting with
the medium by the electrostatic potential11

∆V =
∑
j

∆ν(j), ∆v(j) = −mj ·∆E0. (S14)

The free energy of solvation can be found by thermody-
namic integration2

∆F =

∫ 1

0

dλ⟨∆V ⟩λ. (S15)

The statistical average ⟨∆V ⟩λ is taken with the interac-
tion potential λ∆V and can be expanded in the pertur-
bation series

⟨∆V ⟩λ = ⟨∆V ⟩1 + β(1− λ)⟨(δ∆V )2⟩1, (S16)

where δ∆V = ∆V − ⟨∆V ⟩1. Substituting eqn (S16) to
eqn (S15), one obtains

∆F = ⟨∆V ⟩1 +
1

2
β⟨(δ∆V )2⟩1 (S17)

The average energy gaps in two electron-transfer states
are connected to ∆V by the following equations

X1 = ∆E0 + ⟨∆V ⟩0, X2 = ∆E0 + ⟨∆V ⟩1, (S18)

where ∆E0 is the vacuum energy gap. The Stokes-shift
reorganization energy is given by

λSt =
1

2
(X1 −X2) (S19)

Assuming that the electrostatic interaction averages out
to zero in the state λ = 0 when only repulsions and non-
polar interactions are present, ⟨∆V ⟩0 = 0, one obtains

∆F = −2λSt + λ. (S20)

The absolute value of this equation is eqn (55) in the
main text.
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