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Lattice-dynamics calculations

Lattice-dynamics calculations were performed using pseudopotential plane-wave density-

functional theory (DFT), as implemented in the Vienna Ab initio Simulation Package

(VASP) code,1 in conjunction with the supercell finite-displacement approach implemented

in the Phonopy code.2

Vibrational modes of CO2

Calculations were performed on an isolated CO2 molecule placed at the centre of a large cu-

bic box, with an initial 15 Å between periodic images, using the PBE exchange-correlation

functional3 with the DFT-D3 dispersion correction (i.e. PBE-D3).4 The ion cores were mod-

elled using projector augmented-wave (PAW) pseudopotentials5,6 with the C and O 2s/2p

electrons in the valence region. The valence Kohn-Sham wavefunctions were represented in

a plane-wave basis with an 800 eV kinetic-energy cutoff and sampled at the Γ point (i.e.

a single k-point). The atomic positions were optimised while keeping the cell shape and

volume fixed, and the phonon frequencies and eigenvectors at the Brillouin-zone centre (q =

Γ) were computed using the finite-displacement routines in VASP with a displacement step

of 10−2 Å. To ensure accurate forces, the PAW projection was performed in reciprocal space

and an enhanced charge-density grid with 8× as many points as the standard grids was used

to represent the augmentation charges.

Phonon dispersion and density of states of NaCl

Calculations were performed on the two-atom primitive cell of NaCl (spacegroup Fm3̄m)

using the PBEsol exchange-correlation functional.7 The ion cores were modelled using PAW

pseudopotentials with the Na 3s and Cl 3s/3p electrons in the valence region. The valence

wavefunctions were described using a plane-wave basis with a 550 eV kinetic-energy cutoff

and a Γ-centered Monkhorst-Pack k-point grid8 with 8×8×8 subdivisions. The cell volume
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was fully optimised to tolerances of 10−8 eV on the electronic total energy and 10−2 eV Å
−1

on the forces. The second-order interatomic force constants (IFCs) were determined in a 4

× 4 × 4 supercell of the primitive cell (128 atoms) using the default displacement step of

10−2 Å, and the k-point sampling reduced accordingly. The PAW projection was performed

in reciprocal space and an additional charge-density grid with 8× as many points as the

standard grids was used to represent the augmentation charges. The atom-projected phonon

density of states was obtained by interpolating the phonon frequenies and eigenvectors onto

a uniform Γ-centered q-point mesh with 48×48×48 subdivisions. The phonon dispersion

was obtained by interpolating the frequencies along strings of q-points passing through the

q = L, Γ and X high-symmetry wavevectors in the Fm3̄m Brillouin zone. Non-analytical

corrections to the phonon dispersion to account for the splitting of the longitudinal and

transverse modes close to q = Γ were included using the approach of Gonze et al.,9,10 with

the required high-frequency dielectric constant ε∞ and Born charge tensors Z∗ determined

using the density-functional perturbation theory (DFPT) routines in VASP.11

Phonon dispersion and density of states of crystalline NH3

Calculations were performed on the cubic crystaline phase of NH3 (spacegroup P213) using

PBE-D3. The ion cores were modelled using PAW pesudopotentials with the H 1s and N

2s/2p electrons in the valence region. The valence electronic structure was modelled using

a plane-wave basis with an 800 eV cutoff and a Γ-centered 2×2×2 k-point grid. The initial

structure was taken from the Materials Project database12 (mp-29145) and has four NH3

molecules (16 atoms) in the primitive cell. The atomic positions and unit-cell volume were

optimised to tolerances of 10−8 eV on the total energy and 10−2 eV Å
−1

on the forces. The

second-order IFCs were determined in a 4×4×4 supercell with 1,024 atoms using a 10−2 Å

displacement step, and the k-point sampling reduced accordingly. The PAW projection was

performed in reciprocal space and an enhanced charge-density grid with 8× as many points

as the standard grids was used to represent the augmentation charges. The phonon density
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of states was evaluated on a 24 × 24 × 24 q-point grid, and the dispersion wa computed

along a path including the high-symmetry X, Γ, M and R wavevectors in the P213 Brillouin

zone. In order to classify the phonon modes, the modes at q = Γ were visualised using the

MolecularCrystalPhononAnimation code.13

Spin-phonon coupling formalism

As noted in the main text, the phonon position operators

Q̂qj =

√
h̄

2ωqj

(
âqj + â†−qj

)
(1)

are in general non-Hermitian which complicates the further derivation and practical imple-

mentation of the rate expressions, i.e. loss of the Hermitian property of each individual terms

in Equation 16 in the main text, and complex-valued atomic displacements. In particular,

Q̂qj operators of Γ and zone boundary q-points with qx, qy, qz ∈ {0, 0.5} are Hermitian while

it is only at intermediate q-points denoted by the set q∗ where we choose to introduce a

re-grouping of spin-phonon coupling operator terms as shown in Equation 2. The original

normal mode operators are partitioned into Hermitian and anti-Hermitian parts and pairs of

terms representing conjugate q-points (using the relation Q̂†
qj = Q̂−qj) are grouped together,

which restricts the summation over half of the Brillouin zone denoted by the set q+.
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∑
q∈q∗

j

V̂
(1)
qj =

∑
q∈q∗

j

∂ĤS

∂Qqj

⊗ Q̂qj

=
∑
q∈q∗

j

∂ĤS

∂Qqj

⊗ 1

2

(
Q̂qj + Q̂†

qj

)
︸ ︷︷ ︸

Hermitian

+
1

2

(
Q̂qj − Q̂†

qj

)
︸ ︷︷ ︸

anti-Hermitian

=
∑
q∈q+

j

(
∂ĤS

∂Qqj

+
∂ĤS

∂Q−qj

)
⊗ 1

2

(
Q̂qj + Q̂−qj

)

+
∑
q∈q+

j

i

(
∂ĤS

∂Qqj

− ∂ĤS

∂Q−qj

)
⊗ 1

2i

(
Q̂qj − Q̂−qj

)

=
∑
q∈q+

j

(
∂ĤS

∂Qqj

+
∂ĤS

∂Q−qj

)
⊗ 1

2

√
h̄

2ωqj

(
âqj + â†−qj + â−qj + â†qj

)

+
∑
q∈q+

j

i

(
∂ĤS

∂Qqj

− ∂ĤS

∂Q−qj

)
⊗ 1

2i

√
h̄

2ωqj

(
âqj + â†−qj − â−qj − â†qj

)

=
∑
q∈q+

j

1

2

√
h̄

ωqj

(
∂ĤS

∂Qqj

+
∂ĤS

∂Q−qj

)
⊗

(
âqj + â−qj√

2
+
â†qj + â†−qj√

2

)

+
∑
q∈q+

j

i

2

√
h̄

ωqj

(
∂ĤS

∂Qqj

− ∂ĤS

∂Q−qj

)
⊗

(
âqj − â−qj√

2i
−
â†qj − â†−qj√

2i

)

=
∑
q∈q∗

j

∂ĤS

∂Xqj

⊗
(
b̂qj + b̂†qj

)
. (2)

In the last line we have introduced a new set of phonon creation operators

b̂qj =


âqj+â−qj√

2
if q ∈ q+,

â−qj−âqj√
2i

if − q ∈ q+,
(3)

which are defined for q ∈ q∗, and the Hermitean mode position operators X̂qj = b̂qj + b̂†qj.

The spin-phonon couplings ∂ĤS/∂Xqj can be calculated in terms of the cartesian dis-
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placements as

∂ĤS

∂Xqj

=
1

2

√
h̄

ωqj

(
∂ĤS

∂Qqj

+
∂ĤS

∂Q−qj

)

=
1

2

√
h̄

ωqj

∑
κlα

∂ĤS

∂rακl

(
∂rακl
∂Qqj

+
∂rακl
∂Q−qj

)

=
∑
κlα

∂Ĥs

∂rακl

√
h̄

Nmκωqj

Re [Wα
κ (qj) exp (iq · rκl)] (4)

if q ∈ q+, and

∂ĤS

∂Xqj

=
1

2i

√
h̄

ωqj

(
∂ĤS

∂Qqj

− ∂ĤS

∂Q−qj

)

=
1

2i

√
h̄

ωqj

∑
κlα

∂ĤS

∂rακl

(
∂rακl
∂Qqj

− ∂rακl
∂Q−qj

)

=
∑
κlα

∂Ĥs

∂rακl

√
h̄

Nmκωqj

Im [Wα
κ (qj) exp (iq · rκl)] (5)

if −q ∈ q+, where we have used Wα
κ (−qj) = Wα

κ (qj)
∗.

The Γ point and the q-points at the edge of the Brillouin zone need to be handled

separately. In that case, Q̂qj is already Hermitean, and we define X̂qj =
√

2ωqj

h̄
Q̂qj =

âqj + â†qj, such that the spin-phonon coupling operator simply becomes

∂ĤS

∂Xqj

=

√
h̄

2ωqj

∂ĤS

∂Qqj

=
1√
2

∑
κlα

∂Ĥs

∂rακl

√
h̄

Nmκωqj

Wα
κ (qj) exp (iq · rκl) (6)

if q /∈ q∗. Note that for the practical implementation of Equation 6 we adjust the arbitrary

complex phase of the eigenvector W (qj) to obtain an overall real quantity for the displace-

ment amplitudes Wα
κ (qj) exp (iq · rκl). In analogy with the re-definitions above, second

order coupling parameters ∂2ĤS

/
∂Xqj ∂Xq′j′ can be expressed in the same basis of normal

mode operators X̂qj.

Since the transformation defined in Equation (3) between the set of mode operators âqj
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and b̂qj is unitary, the canonical commutation relations are preserved, e.g. [b̂ki, b̂
†
qj] = δijδqk.

This allows us to easily calculate the bath correlation functions that we will use to write

down the quantum master equations for the reduced density matrix of the spin system in the

next section. In particular, the two-time bath correlation function at thermal equilibrium,

which determines the one-phonon (Orbach) rates, is given by

⟨X̂qj(t)X̂q′j′(t
′)⟩eq = δqq′δjj′

[
(n̄qj + 1)e−iωqj(t−t′) + n̄qje

iωqj(t−t′)
]
=: δqq′δjj′cqj(t− t′), (7)

where n̄qj = 1/(eh̄ωqj/kBT −1) is the Bose-Einstein occupation number. It can be shown that

the four-time equilibrium correlation functions entering the Raman-I and Raman-II rates

can be decomposed in terms of two-time correlations functions as

⟨X̂q0j0(t0)X̂q1j1(t1)X̂q2j2(t2)X̂q3j3(t3)⟩eq = ⟨X̂q0j0(t0)X̂q3j3(t3)⟩eq⟨X̂q1j1(t1)X̂q2j2(t2)⟩eq (8)

+ ⟨X̂q0j0(t0)X̂q2j2(t2)⟩eq⟨X̂q1j1(t1)X̂q3j3(t3)⟩eq

+ ⟨X̂q0j0(t0)X̂q1j1(t1)⟩eq⟨X̂q2j2(t2)X̂q3j3(t3).⟩eq

This fact only relies on the operators X̂qj being Hermitian linear combinations of cre-

ation/annihilation operators, and on the Gaussian property of thermal states.

Quantum Master Equations

In this section we apply the time-convolutionless (TCL) expansion14 of the generator of

the reduced dynamics to obtain 2nd and 4th order quantum master equations describing the

dynamics of a spin system coupled to a very large vibrational bath in thermal equilibrium.

We consider both linear and quadratic couplings to a harmonic environment, in order to

obtain expressions for the Orbach, Raman-I and Raman-II magnetic relaxation rates. The
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system-bath coupling Hamiltonian is thus

ĤSB =
∑
i

V̂i ⊗ X̂i +
1

2

∑
ij

Ŵij ⊗ X̂iX̂j, (9)

where V̂i =
(

∂ĤS

∂Xi

)
eq

and Ŵij =
(

∂2ĤS

∂Xi∂Xj

)
eq

are the first and second derivatives of the spin

Hamiltonian ĤS with respect to modes i and j at the equilibrium geometry. For ease of

notation, we set h̄ = 1 and we drop the q-point dependence of the modes, letting a single

mode index i run over both phonon bands and q-points within the first Brillouin zone. We

also assume, without loss of generality, that every single term in the sums in Equation (9)

is Hermitian, based on the results shown in the previous section.

Up to 4th order in the system-bath coupling, the spin reduced density matrix ρ evolves

according to the quantum master equation

dρ

dt
= −i[ĤS, ρ] +K2ρ+K4ρ. (10)

The 4th order term consists of two contributions K4 = KI
4 +KII

4 , describing the effect of the

linear spin-phonon coupling to 4th order (KI
4) and the 2nd order contribution of the quadratic

spin-phonon coupling (KII
4 ).

The matrix element of the generator Kab,cd describes the influence of ⟨ψc| ρ |ψd⟩ on the

time evolution of ⟨ψa| ρ |ψb⟩. If we are only interested in relaxation rates for spin popula-

tions, we can focus just on the terms Kff,ii, which represents the transition rate between

two eigenstates of the system Hamiltonian HS at energies Ei and Ef . In general, population

dynamics is influenced by the presence of coherences, i.e. Kff,ab ̸= 0 for a ̸= b. However,

one often invokes the secular approximation 14 (or rotating wave approximation), which leads

to a decoupling of populations from coherences, provided the system has a non-degenerate

spectrum (in this context, ”non-degenerate” implies ωif ≫ 2πτ−1, which is easily satisfied

for magnetic molecules in small magnetic fields of a few Oe). If the spectrum is degenerate,
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it can be shown that the only coherence-to-population terms Kff,ab surviving the secular

approximation are the ones involving coherences between degenerate states, i.e. Ea = Eb.

The secular approximation amounts to neglecting oscillatory terms in the interaction pic-

ture representation of the generator K, based on the idea that energy gaps between system

eigenstates correspond to frequencies that are much faster than the relaxation dynamics,

and therefore average to zero on the long timescale of magnetic relaxation.

Orbach rates

To lowest order in the spin-phonon coupling, the rate of change of the spin reduced density

matrix is given by the 2nd order TCL expansion (TCL2) in the linear system-bath coupling,

which we call K2ρ. In the interaction picture, where ρ̃(t) = eiĤStρ(t)e−iĤSt, this is given by

dρ̃(t)

dt
= K̃2ρ̃(t) = −

∑
i

∫ t

0

dt1ci(t− t1)[V̂i(t), V̂i(t1)ρ̃(t)] + h.c. (11)

(h.c. means Hermitian conjugate) which is widely known as the Redfield Equation. The

function ci(t− t1) represents the two-time bath correlation function calculated on a thermal

equilibrium state, i.e.

⟨X̂i(t)X̂j(t
′)⟩eq = δijci(t− t′) = δij

[
e−iωi(t−t′)(n̄i + 1) + eiωi(t−t′)n̄i

]
(12)

where ωi is the mode frequency and n̄i = 1/(eωi/kBT −1) is the occupation number at thermal

equilibrium.

We introduce the jump operators between system energy levels

V̂i(ω) =
∑

Ea−Eb=ω

|ψb⟩ ⟨ψb| V̂i |ψa⟩ ⟨ψa| , (13)
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which allow us to decompose the time evolution of system operators as

V̂i(t) = eiĤStV̂ie
−iĤSt =

∑
ω

e−iωtV̂i(ω). (14)

This decomposition allows us to separate all the time-dependent factors in Equation (11)

and perform the time integral. Transforming back to the Schrödinger picture, we obtain

K2ρ(t) = −
∑
i

∑
ω1

Ri(ω1)[V̂i, V̂i(ω1)ρ(t)] + h.c. (15)

where the rate Ri(ω1) is given by

Ri(ω1) = Re lim
t→∞

∫ t

0

dt1e
iω1(t−t1)ci(t− t1). (16)

Note that we have introduced two approximations. First, we have taken the upper limit of

integration to go to infinity, i.e. t→ ∞. This corresponds to only focusing on the long-time

limit of the Markovian dynamics. Second, we are deliberately neglecting the imaginary part

of the rates. This is because we are only interested in the dissipative relaxation dynamics

induced by the real part, as opposed to the oscillatory dynamics described by the imaginary

part. The limit t → ∞ gives rise to selection rules for transitions between spin states

depending on the phonon energies, based on the relation

lim
t→∞

sin(ωt)

πω
= δ(ω). (17)

Substituting Equation (12) into the expression for Ri(ω1), and calculating the contribution

to ⟨ψf | K2ρ |ψf⟩ stemming from ⟨ψi| ρ |ψi⟩, we obtain the Orbach relaxation rates

(K2)ff,ii = 2π
∑
i

∣∣∣V fi
i

∣∣∣2 [(n̄i + 1)δ(ωif − ωi) + n̄iδ(ωif + ωi)] , (18)

where we introduced the notation V ab
i = ⟨ψa| V̂i |ψb⟩ and ωab = Ea − Eb. Extension to
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modes with finite linewidth is straightforward, and simply amounts to integrating the rate

expression over a continuous distribution of mode energies described by a lineshape function

(see main text).

Raman-II rates

The Raman-II relaxation mechanism is captured by the TCL2 expansion in the quadratic

spin-phonon coupling in Equation (9). In this case, we need to account for the non-vanishing

expectation value of the quadratic spin-phonon coupling at equilibrium, i.e. ⟨X̂iX̂j⟩eq =

δijci(0) ̸= 0. We do so by adding and subtracting this expectation value to the bath operators

and incorporating it into a redefined system Hamiltonian ĤS+
1
2

∑
ij Ŵij⟨X̂iX̂j⟩eq. We rewrite

the residual quadratic spin-phonon coupling as

1

2

∑
ij

Ŵij ⊗
(
X̂iX̂j − ⟨X̂iX̂j⟩eq

)
=
∑
µ

V̂µ ⊗ X̂µ, (19)

where the index µ runs over all mode pairs (i, j) (including i = j) and we have introduced

V̂µ = Ŵij/2 and X̂µ = X̂iX̂j−⟨X̂iX̂j⟩eq. These definitions allow us to exploit the analogy with

the TCL2 expansion for the linear coupling carried out in the previous section. Replacing

V̂i → V̂µ in Equation (15) and X̂i → X̂µ in Equation (12), yields the Raman-II rates.

The two-time correlation function for the operators X̂µ can be readily obtained from

Equation (8), yielding

⟨X̂ij(τ)X̂kl⟩eq = (δikδjl + δilδjk)ci(τ)cj(τ). (20)

Following the same steps outlined in the previous section for Orbach rates, we obtain the
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Raman-II rates

(KII
4 )ff,ii = π

∑
ij

∣∣∣W fi
ij

∣∣∣2[δ(ωif − ωi − ωj) (n̄i + 1) (n̄j + 1) (21)

+ δ(ωif − ωi + ωj) (n̄i + 1) n̄j

+ δ(ωif + ωi − ωj) n̄i (n̄j + 1)

+ δ(ωif + ωi + ωj) n̄i n̄j

]
.

Raman-I rates

Following Breuer and Petruccione,14 we write the TCL4 generator of the system reduced

dynamics as

K̃I
4ρ̃ =

∑
ij

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

{
ci(t− t2)cj(t1 − t3)[V̂i(t), [V̂j(t1), V̂i(t2)]V̂j(t3)ρ̃]

− c∗i (t− t2)cj(t1 − t3)[V̂i(t), V̂j(t3)ρ̃[V̂j(t1), V̂i(t2)]]

+ ci(t− t3)cj(t1 − t2)[V̂i(t), [V̂j(t1), V̂i(t3)]V̂j(t2)ρ̃]

− c∗i (t− t3)cj(t1 − t2)[V̂i(t), V̂j(t2)ρ̃[V̂j(t1), V̂i(t3)]]

+ ci(t− t3)cj(t1 − t2)[V̂i(t), V̂j(t1)[V̂j(t2), V̂i(t3)]ρ̃]

− ci(t− t3)cj(t1 − t2)[V̂i(t), [V̂j(t2), V̂i(t3)]ρ̃V̂j(t1)]
}

+ h.c. (22)

where the tilde indicates that we are in the interaction picture. Using the same spectral

decomposition of V̂i(t) introduced above, we write the Schrödinger picture representation of
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the TCL4 generator as

KI
4ρ =

∑
ω1,ω2,ω3

∑
ij

{
R

(1)
ij (ω1, ω2, ω3)[V̂i, [V̂j(ω1), V̂i(ω2)]V̂j(ω3)ρ]

−R
(2)
ij (ω1, ω2, ω3)[V̂i, V̂j(ω3)ρ[V̂j(ω1), V̂i(ω2)]]

+R
(3)
ij (ω1, ω2, ω3)[V̂i, [V̂j(ω1), V̂i(ω3)]V̂j(ω2)ρ]

−R
(4)
ij (ω1, ω2, ω3)[V̂i, V̂j(ω2)ρ[V̂j(ω1), V̂i(ω3)]]

+R
(3)
ij (ω1, ω2, ω3)[V̂i, V̂j(ω1)[V̂j(ω2), V̂i(ω3)]ρ]

−R
(3)
ij (ω1, ω2, ω3)[V̂i, [V̂j(ω2), V̂i(ω3)]ρV̂j(ω1)]

}
+ h.c. (23)

where we have defined

R
(1)
ij (ω1, ω2, ω3) = Re lim

t→∞

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3e
−i(ω1t1+ω2t2+ω3t3)ei(ω1+ω2+ω3)tci(t− t2)cj(t1 − t3)

(24)

R
(2)
ij (ω1, ω2, ω3) = Re lim

t→∞

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3e
−i(ω1t1+ω2t2+ω3t3)ei(ω1+ω2+ω3)tc∗i (t− t2)cj(t1 − t3)

(25)

R
(3)
ij (ω1, ω2, ω3) = Re lim

t→∞

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3e
−i(ω1t1+ω2t2+ω3t3)ei(ω1+ω2+ω3)tci(t− t3)cj(t1 − t2)

(26)

R
(4)
ij (ω1, ω2, ω3) = Re lim

t→∞

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3e
−i(ω1t1+ω2t2+ω3t3)ei(ω1+ω2+ω3)tc∗i (t− t3)cj(t1 − t2)

(27)
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As discussed above, we neglect the imaginary part of the rates and only consider the long-

time limit. In the limit t→ ∞, all R
(ξ)
ij can be expressed in terms of just two functions

α(ωi, ωj;ω1, ω2, ω3) =
δ(ω2 + ω3 − ωi − ωj)

(ω1 + ωj)(ω2 − ωi)
− δ(ω1 + ω2 + ω3 − ωi)

(ω1 + ωj)(ω1 + ω2 − ωi + ωj)
(28)

− δ(ω3 − ωj)

(ω2 − ωi)(ω1 + ω2 − ωi + ωj)

and

β(ωi, ωj;ω1, ω2, ω3) =
δ(ω2 + ω3 − ωi − ωj)

(ω1 + ωj)(ω2 − ωj)
− δ(ω1 + ω2 + ω3 − ωi)

(ω1 + ωj)(ω1 + ω2)
(29)

− δ(ω3 − ωi)

(ω2 − ωj)(ω1 + ω2)
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as

R
(1)
ij (ω1, ω2, ω3) = π

[
+ α(+ωi,+ωj;ω1, ω2, ω3) (n̄i + 1)(n̄j + 1) (30)

+ α(+ωi,−ωj;ω1, ω2, ω3) (n̄i + 1)n̄j

+ α(−ωi,+ωj;ω1, ω2, ω3) n̄i(n̄j + 1)

+ α(−ωi,−ωj;ω1, ω2, ω3) n̄in̄j

]
R

(2)
ij (ω1, ω2, ω3) = π

[
+ α(−ωi,+ωj;ω1, ω2, ω3) (n̄i + 1)(n̄j + 1) (31)

+ α(−ωi,−ωj;ω1, ω2, ω3) (n̄i + 1)n̄j

+ α(+ωi,+ωj;ω1, ω2, ω3) n̄i(n̄j + 1)

+ α(+ωi,−ωj;ω1, ω2, ω3) n̄in̄j

]
R

(3)
ij (ω1, ω2, ω3) = π

[
+ β(+ωi,+ωj;ω1, ω2, ω3) (n̄i + 1)(n̄j + 1) (32)

+ β(+ωi,−ωj;ω1, ω2, ω3) (n̄i + 1)n̄j

+ β(−ωi,+ωj;ω1, ω2, ω3) n̄i(n̄j + 1)

+ β(−ωi,−ωj;ω1, ω2, ω3) n̄in̄j

]
R

(4)
ij (ω1, ω2, ω3) = π

[
+ β(−ωi,+ωj;ω1, ω2, ω3) (n̄i + 1)(n̄j + 1) (33)

+ β(−ωi,−ωj;ω1, ω2, ω3) (n̄i + 1)n̄j

+ β(+ωi,+ωj;ω1, ω2, ω3) n̄i(n̄j + 1)

+ β(+ωi,−ωj;ω1, ω2, ω3) n̄in̄j

]
.

We note that the first Dirac delta in Equations (28) and (29) corresponds to a two-phonon

selection rule, whereas the second and third terms represent selection rules involving only

one mode, and therefore describe effective single-phonon processes. Note that, whenever the

denominator of the two-phonon term vanishes, the effective single-phonon terms cancel out

the divergence.

We can now calculate the Raman-I rate for a transition between initial and final states ψi
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and ψf by taking the expectation value ⟨ψf | K4ρ |ψf⟩ and collecting all terms proportional

to ⟨ψi| ρ |ψi⟩. Upon expanding all the nested commutators in Equation (23), the TCL4 gen-

erator takes the form of a sum of terms where four different spin-phonon coupling operators

act on the spin density matrix, from the left, right, or any possible combination, i.e. terms

of the form V̂ V̂ V̂ V̂ ρ, V̂ V̂ V̂ ρV̂ , V̂ V̂ ρV̂ V̂ , V̂ ρV̂ V̂ V̂ , and ρV̂ V̂ V̂ V̂ , and with all possible per-

mutations of mode indices i and j. Grouping together all terms with the same dependence

on the operators V̂i, we obtain

(KI
4)ff,ii = −2 Re

∑
ij

∑
ab

{
V fa
j V ab

i V bi
j V

if
i r

(1)
ij (Ei, Ef , Ea, Eb) (34)

+ V fa
i V ab

j V bi
j V

if
i r

(2)
ij (Ei, Ef , Ea, Eb)

+ V fa
j V ab

j V bi
i V

if
i r

(3)
ij (Ei, Ef , Ea, Eb)

+ V fa
i V ai

j V
ib
i V

bf
j r

(4)
ij (Ei, Ef , Ea, Eb)

+ V fa
i V ai

j V
ib
j V

bf
i r

(5)
ij (Ei, Ef , Ea, Eb)

}
,

with

r
(1)
ij = R

(1)
ij (ωaf , ωba, ωib) +R

(2)
ji (ωab, ωbi, ωif ) +R

(3)
ji (ωfi, ωba, ωib) +R

(4)
ji (ωab, ωif , ωbi) (35)

r
(2)
ij = −R(1)

ij (ωba, ωaf , ωib)−R
(3)
ij (ωba, ωib, ωaf ) (36)

r
(3)
ij = R

(3)
ij (ωaf , ωba, ωib)−R

(2)
ji (ωbi, ωab, ωif )−R

(3)
ji (ωfi, ωib, ωba)−R

(4)
ji (ωbi, ωif , ωab) (37)

r
(4)
ij = −R(2)

ij (ωfb, ωbi, ωia)−R
(3)
ij (ωai, ωbf , ωib)−R

(4)
ij (ωfb, ωia, ωbi) (38)

r
(5)
ij = R

(2)
ij (ωbi, ωfb, ωia) +R

(3)
ij (ωbi, ωia, ωaf ) +R

(4)
ij (ωbi, ωia, ωfb). (39)

The first three lines in Equation (34) correspond to terms of the form V̂ V̂ V̂ ρV̂ and V̂ ρV̂ V̂ V̂ ,

while lines four and five correspond to V̂ V̂ ρV̂ V̂ , while there is no contribution from terms of

the form ρV̂ V̂ V̂ V̂ or V̂ V̂ V̂ V̂ ρ. All five terms in Equation (34) can contribute to population

dynamics via the effective single-phonon transitions arising from Equations (28) and (29),
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and thus can be seen as higher order corrections to the Orbach process. However, it can

be shown that only the last two lines contribute to genuine two-phonon Raman transitions.

Focussing only on these terms, we can finally write the Raman-I rate as

(KI
4)ff,ii = π

∑
ij

[
ηfi(+ωi,+ωj) δ(ωif − ωi − ωj) (n̄i + 1) (n̄j + 1) (40)

+ ηfi(+ωi,−ωj) δ(ωif − ωi + ωj) (n̄i + 1) n̄j

+ ηfi(−ωi,+ωj) δ(ωif + ωi − ωj) n̄i (n̄j + 1)

+ ηfi(−ωi,−ωj) δ(ωif + ωi + ωj) n̄i n̄j

]
,

with

ηfi(ωi, ωj) =

∣∣∣∣∣∑
a

(
V fa
i V ai

j

ωai + ωj

+
V fa
j V ai

i

ωai + ωi

)∣∣∣∣∣
2

. (41)
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