Supporting Information

Bimetallic PdCu–Fe₃O₄ catalyst with optimal

d-band centre for selective *N*-methylation of

aromatic amine with methanol

Jin Hee Cho,^a Yoonhoo Ha,^b Ahra Cho,^a Jihye Park,^b Jaeyoon Choi, ^a

Youngdae Won^c Hyungjun Kim,^b* and Byeong Moon Kim^a*

^aDepartment of Chemistry, College of Natural Sciences, Seoul National University,

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

^bDepartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST),

Daejeon 34141, Republic of Korea

^cThe Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea

> Corresponding author's email address Byeong Moon Kim: kimbm@snu.ac.kr Hyungjun Kim: linus16@kaist.ac.kr

Table of Contents	page
1.Materials/Instrumentation	S3
2. Experimental Details	S6
3. Catalyst Characterization	
- Figure S1. ICP-AES analysis	S8
- Figure S2. FE-SEM analysis	S10
- Figure S3. HR-TEM analysis	S11
- Figure S4. Average particle distribution of Pd _x Cu _y –Fe ₃ O ₄ NPs	S12
- Figure S5. Cs-STEM analysis of Pd ₁ Cu _{0.6} –Fe ₃ O ₄	S13
- Figure S6. EDS line scanning of Pd ₁ Cu _{0.6} –Fe ₃ O ₄	S14
- Figure S7. XRD patterns of Pd _x Cu _y –Fe ₃ O ₄	S17
- Figure S8. XPS spectra of Pd	S18
- Figure S9. XPS spectra of Cu	S19
-Figure S10. XPS spectra Pd3d _{5/2} and Cu 2p _{3/2} regions Pd _x Cu _y –Fe ₃ O ₄ NPs	S20
4. Supplementary Figures and Tables	
- Table S1. Comparison of the catalytic activity with other heterogeneous catalyst	S21
- Table S2. Comparison catalytic activity of PdCu nanoparticles on different supports	S22
- Figure S11. ICP-AES data of other support catalysts	S22
- Figure S12. SEM images of other support catalysts	S23
- Figure S13. HR-TEM images of other support catalysts	S24
5. Kinetic Experiment	
- Figure S14. ¹ H NMR data anaylsis of deuterium labeling test	S25
- Figure S15. The ratio of non-deuterated and deuterated products	S26
6. Computational Details	S27
- Figure S16. Ten atomic structures of fcc PdCu random alloy (RA) models	S28
- Figure S17. DFT-optimized fcc (111) slab models	S29
- Figure S18. DFT-optimized (111) slab models	S30
- Figure S19. Projected density of states (PDOS) of d-electrons	S31
- Figure S20. Correlation between the TOF and the reaction yield of <i>N</i> -methylation	S32
- Table S3. Dimensions of <i>k</i> -point meshes and corresponding lattice parameters of the simulation cell	S33
- Table S4. DFT-calculated total energy	S33
- Table S5. Computed 3-fold binding energies of Pd _x Cu _y	S34
- Table S6. Computed total energies of possible stacking configurations of the interfacial supercells	S38
7. Recycle Experiment	
- Figure S21. Recyclability of Pd1Cu0.6-Fe3O4	S39
- Figure S22. HR-TEM images of used NPs	S40
- Figure S23. ICP-AES data of used NPs	S42
8. NMR spectra	S43
9. References	S63

1. Materials/Instrumentation

<u>Materials</u>

All commercially available chemicals were used as received without further purification. Palladium chloride (99% purity) and copper(II) chloride dihydrate (99.0% purity) were purchased from Alfa-Aesar. Polyvinylpyrrolidone (PVP, Mw~10,000) was purchased from Sigma-Aldrich. Iron oxide nanoparticle (Fe₃O₄ NP) was purchased from Beijing-DK-nanotechnology.

ESCA (Electron Spectroscopy for Chemical Analysis)

- 1. Model: Axis Supra™ (Kratos, U.K.)
- 2. Vacuum System
 - (1) The sample analysis chamber is a multiport ultra-high vacuum chamber of mu-metal construction.

(2) Bakeout : 24hour~7day timer with thermostatically controlled, no need remove any cables and cameras before baking.

- (3) Pumping kit
- The sample analysis chamber : TMP, TSP
- (Base pressure in the analysis chamber is < 5x10 10 torr)
- The load lock chamber : TMP, oil free dry scroll pump.
- (Base pressure in the analysis chamber is < 5x10-8 torr)
- 3. Electron energy analyser

(1) 165mm mean radius concentric hemispherical analyser for spectroscopy and a spherical mirror analyser for imaging.

(2) 128 channel delay line detector (DLD) be used for both spectroscopy and parallel imaging modes.

(3) In spectroscopy mode should have greater than 100 discrete data channels improving the sensitivity in spectroscopy mode.

- (4) X-ray photoelectron spectroscopy
- Ultimate energy resolution : $\leq 0.48 eV(Ag3d_{5/2}peak)$
- (5) X-ray photoelectron imaging
- Lateral resolution of the parallel imaging : $\leq 1 \ \mu m$
- 4. Automated monochromatic X-ray source
 - (1) 500 mm Rowland circle geometry, controlled by data system.

(2) Auto arrangement provides easy control, optimisation and calibration of the mirror position and ensures that the X-ray illuminated area is correctly aligned with the analysis position.

Transmission Electron Microscope II (ccd camera type)

- 1. Model: JEM 3010 (JEOL, JAPAN)
- 2. Specification
 - a. EDS (INCA, Oxford)
 - b. GATAN UltraScan CCD Camara
 - c. Accelerating Voltage: 300 kV
 - d. Vacuum System: 10-5 pa order (specimen chamber)
 - e. Resolution: Point image: 0.17 nm Lattice image: 0.14 nm

Cs-TEM (Cs corrected TEM with Cold FEG)

- 1. Model: JEM-ARM200F (Cold Field Emission Type)
- 2. Specifications:
 - a. HT: 60, 80, 120, 200 kV
 - b. Magnification: 50 to 2,000,000 X (TEM), 200 to 1,500,000 X (STEM)
 - c. Resolution
 - TEM mode: Lattice 0.07 nm/ Point 0.11 nm STEM mode: 0.136 nm
 - d. Sample tilting
 - X / Y: ± 25° / ± 25°
- 3. Analysis functions:
 - a. CCD Camera: UltraScan 1000XP (2,048 x 2,048 pixel) b. EDS: SDD Type (Active area 1 00 mm²/ Solid angle 0.7 str)

Cs-STEM (Cs corrected STEM with Cold FEG)

- 1. Model: JEM-ARM200F (Cold Field Emission Type, JEOL)
- 2. Specifications
 - a. HT: 60, 80, 120, 200 kV
 - b. Magnification: 50 to 2,000,000 X (TEM), 200 to 1,500,000 X (STEM)
 - c. Resolution STEM mode: HAADF 0.1 nm/ BF 0.136 nm TEM mode: Point 0.23 nm
 - d. Sample tilting X / Y: ±35° / ±30°
- 3. Analysis functions
 - a. CCD Camera: UltraScan 1000XP (2,048 x 2,048 pixel)
 - b. EDS: SDD Type (Active area 100 mm²/ Solid angle 0.9 str)
 - c. EELS: Model 965 GIF Quantum ER

FE-SEM (Field Emission Scanning Electron Microscope)

- 1. Model: JSM-7600F (FE-SEM)
- 2. Specification
 - a. Resolution: 1) 1.0 nm at 15 kV 2) 1.5 nm at 1 kV
 - b. Voltage range: 0.1 ~ 30 kV
 - c. Maximum image size: 5,120 x 3,840 pixels
 - d. Probe current: 1pA ~ 200 nA
 - e. Tilt: -5 ~ 70°
 - f. Rotation: 360°
 - g. Working Distance: 1.5 ~ 25 mm

* PdCu–Fe₃O₄ samples were analyzed on Cs-STEM (Cs corrected STEM with Cold FEG), Cs-TEM (Cs corrected TEM with Cold FEG) and High resolution Transmission Electron Microscope (ccd camera type), and ESCA installed at the <u>National Center for Inter-university Research Facilities (NCIRF)</u> at Seoul National University.

*SEM images of PdCu–Fe₃O₄ were obtained with a JSM7600F at a voltage of 15 kV installed at <u>Seoul National University Research Institute of Advanced Materials.</u>

XRD (Powder X-Ray Diffractometry)

- 1. Model: D8 ADVANCE with DAVINCI (BRUKER, German)2.
- 2. Specification
 - a. Detector: LYNXEYE XE
 - b. Generator: 40 kV, 40 mA
 - c. 2 theta range: 5-100 degree
 - d. Step: 0.02
 - f. Scanspeed: 0.5 sec/step
 - g. Savelength(λ): Cu k α 1 1.541

*XRD data of PdCu–Fe₃O₄ were obtained from institution <u>The National Instrumentation Center for</u> <u>Environmental Management(NICEM) at Seoul National University.</u>

2. Experimental Details

Synthesis of Pd₁Cu_{0.6}–Fe₃O₄ NPs

Palladium chloride (PdCl₂, 0.102 g) and polyvinylpyrrolidone (PVP, Mw ~10,000, 1.20 g) were placed in 12.0 mL ethylene glycol (EG) in a 50.0 mL round-bottom flask. The mixture was sonicated for 10 min and heated for 1 h at 100 °C. Simultaneously, copper(II) chloride dihydrate (CuCl₂•2H₂O, 0.074 g) and PVP (Mw ~10,000, 0.460 g) were dissolved in 9.00 mL water in a 50.0 mL round-bottom flask. This copper mixture was sonicated for 10 min and heated for 30 min at 70 °C in an oil bath. Meanwhile, 0.300 g of Fe₃O₄ NPs (100 nm, DK nano) was placed in 80.0 mL of EG. The heated palladium mixture was firstly added dropwise to Fe₃O₄ NP solution via a syringe pump. Next, the heated copper precursor was secondly added dropwise. Lastly, an aqueous sodium borohydride (NaBH₄, 0.030g) solution in water (6.00 mL) was added dropwise twice to the resulting mixture using syringe pump. The mixture was stirred for 3 h at 100 °C. The nanoparticles were than washed with ethanol. Pd₁Cu_{0.6}–Fe₃O₄NPs (0.310 g) was obtained from drying in a rotary evaporator for 20 min at 50 °C.

Synthesis of Pd_xCu_y–Fe₃O₄ NPs

Pd_xCu_y–Fe₃O₄NPs were prepared using the same method as that of Pd₁Cu_{0.6}–Fe₃O₄NPs but with different Pd and Cu quantities. In common, Fe₃O₄ NPs (0.100 g) with EG (30.0 mL) and sodium borohydride (0.020 g) in water (4.00 mL) were used. The precursor quantities in each composition were as follows: (1) Pd₁Cu_{0.3}–Fe₃O₄ NPs: PdCl₂ (0.034 g), PVP (0.400 g), and EG (4.00 mL) for the Pd precursor and CuCl₂•2H₂O (0.012 g), PVP (0.076 g) and water (1.50 mL) for the Cu precursor. (2) Pd₁Cu₁–Fe₃O₄ NPs: PdCl₂ (0.017 g), PVP (0.200 g) and EG (2.00 mL) for the Pd precursor and CuCl₂•2H₂O (0.020 g), PVP (0.130 g) and water (2.60 mL) for the Cu precursor. (3) Pd_{0.5}Cu₁–Fe₃O₄ NPs: PdCl₂ (0.010 g), PVP (0.120 g), and EG (1.20 mL) for the Pd precursor, and CuCl₂•2H₂O (0.033 g), PVP (0.200 g) and water (4.00 mL) for the Cu precursor. (4) Pd_{0.2}Cu₁–Fe₃O₄ NPs: PdCl₂ (0.008 g), PVP (0.100 g), and EG (1.00 mL) for the Pd precursor and CuCl₂•2H₂O (0.0245 g) and water (4.00 mL) for the Pd precursor.

Synthesis of Pd–Fe₃O₄ NPs

 $PdCl_2$ (0.102 g) and PVP (1.20 g) in ethylene glycol (26.0 mL) were placed in a 100 mL round-bottom flask. The mixture was sonicated until complete dissolution and then stirred at 100 °C for 1 h. Fe₃O₄ support was prepared by mixing. The Pd precursor solution was then added dropwise to Fe₃O₄ (0.300 g) in EG (90.0 mL) in a 250 mL round-bottom flask via a syringe pump. The solution was stirred at 110 °C for 23 h and the resulting Pd–Fe₃O₄ were washed as in the preparation of PdCu–Fe₃O₄ NPs. After drying, 0.280 g of Pd–Fe₃O₄ NPs were obtained.

Synthesis of Cu–Fe₃O₄ NPs

CuCl₂•2H₂O (0.025 g) and PVP (0.150 g) in deionized water (3.00 mL) were placed in 50.0 mL roundbottom flask. This copper precursor was sonicated for 5 min. The mixture was stirred at 70 °C for 30 min. The copper mixture was then added dropwise to an aqueous Fe₃O₄ (0.100g) solution in 30.0 mL water. After the addition is complete, an aqueous sodium borohydride (NaBH₄, 0.020 g) solution in water (4.00 mL) was added dropwise to the resulting solution via a syringe pump. The resulting Cu–Fe₃O₄ nanoparticle was washed in the same way as in the preparation of PdCu–Fe₃O₄ NPs. Lastly, Cu–Fe₃O₄ NPs (0.090 g) was obtained.

Synthesis of PdCu NPs on different supports

Bimetallic PdCu on TiO₂, CeO₂ and Al₂O₃ were prepared following the same procedure as used for the PdCu–Fe₃O₄ synthesis, with each oxide as a replacement of Fe₃O₄. Each 0.100 g of titanium(IV) oxide (nanopowder, <100 nm particle size), cerium(IV) oxide (nanopowder, <50 nm particle size), and aluminum oxide (nanopowder, <50 nm particle size) was placed in EG (30 mL). PdCl₂ (0.034 g), PVP(0.400 g), and EG (4.00 mL) were used to prepare the Pd precursor, and CuCl₂•2H₂O (0.025 g), PVP (0.015 g), and water (3.00 mL) were used for the Cu precursor. Sodium borohydride (0.020 g) of and water (4.00 mL) were used as reductants.

A general procedure for *N*-methylation of amine using methanol

 $Pd_1Cu_{0.6}$ -Fe₃O₄NPs (5 mol% catalyst based on Pd), amine (0.500 mmol), K₂CO₃ (0.500 mmol, 0.069 g), and methanol (5.00 mL) were placed in a 35.0 mL pressured tube. The mixture was then stirred at 140 °C in an oil bath. After cooling to room temperature, the catalyst was separated using an external magnet. Subsequently, the solvent was removed using a rotary evaporator and the residue was purified by column chromatography to furnish the desired amine. The product was analyzed by GC and NMR spectroscopy.

Deuterium labeling test

Reactions using CH₃OH, CD₃OD and CH₃OD for the *N*-methylation were explored under the same conditions following the general procedure. The resulting products were confirmed by ¹H NMR and GC.

Procedure for gram-scale synthesis

Pd₁Cu_{0.6}–Fe₃O₄NPs (5 mol% catalyst based on Pd), aniline (10.0 mmol), K₂CO₃ (10.0 mmol) and methanol (50.0 mL) were placed in a 500 mL round-bottom pressure flask with a magnetic stirrer bar. The mixture was sonicated for 1 min. The reaction was stirred for 24 h at 140 °C in an oil bath. After completion of reaction, the catalyst was separated by an external magnet. Methanol was removed with a rotary evaporator. The crude product was then purified using column chromatography over silica gel to furnish the *N*-methyl aniline in 0.916 g (85% yield)

3. Catalyst Characterization

Catalyst	Pd (wt%)	Cu (wt%)	Metal ratio of Pd:Cu
Pd–Fe ₃ O ₄	8.80	-	-
$Pd_1Cu_{0.3}Fe_3O_4$	8.89	1.58	1.00 : 0.29
$Pd_1Cu_{0.6} - Fe_3O_4$	8.37	3.02	1:00 : 0.60
$Pd_1Cu_1-Fe_3O_4$	4.94	3.21	1.00 : 1.08
$Pd_{0.5}Cu_1 - Fe_3O_4$	3.39	4.24	0.47 : 1.00
$Pd_{0.2}Cu_1 - Fe_3O_4$	3.17	8.78	0.21 : 1.00
Cu–Fe ₃ O ₄	-	7.07	-

Figure S1. ICP-AES data of Pd_xCu_y–Fe₃O₄ NPs.

Figure S2. FE-SEM images of (a) and (b) Pd–Fe₃O₄ NPs; (c) and (d) Pd₁Cu_{0.3}–Fe₃O₄ NPs; (e) and (f) Pd₁Cu₁–Fe₃O₄ NPs; (g) and (h) Pd_{0.5}Cu₁–Fe₃O₄ NPs; (i) and (j) Pd_{0.2}Cu₁–Fe₃O₄ NPs; (k) and (l) Cu–Fe₃O₄ NPs.

< 6-7 nm 7-8 nm 8-9 nm 9-10 nm 10-11 nm 11-12 nm 12 nm > Particle size (diameter)

Figure S3. HR-TEM images and the particle size distributions of (a) Pd–Fe₃O₄ NPs; (b) Pd₁Cu_{0.3}–Fe₃O₄ NPs; (c) Pd₁Cu₁–Fe₃O₄ NPs; (d) Pd_{0.5}Cu₁–Fe₃O₄ NPs; (e) Pd_{0.2}Cu₁–Fe₃O₄ NPs; (f) Cu–Fe₃O₄ NPs.

Catalyst (on Fe₃O₄)	Average particle size	Volume mean diameter (D ₄₃)
Pd	7.8 nm	9.7 nm
Pd ₁ Cu _{0.3}	8.3 nm	9.8 nm
Pd ₁ Cu _{0.6}	8.9 nm	10.2 nm
Pd ₁ Cu ₁	9.5 nm	10.7 nm
Pd _{0.5} Cu ₁	10.0 nm	11.7 nm
Pd _{0.2} Cu ₁	10.2 nm	17.0 nm
Cu	13.3 nm	21.8 nm

Figure S4. Average particle distribution of Pd_xCu_y–Fe₃O₄ NPs.

Figure S5. (a), (c), (e), and (g) HADDF-STEM images of $Pd_1Cu_{0.6}$ -Fe₃O₄ NPs; (b), (d), (e), and (h) BF-STEM images of $Pd_1Cu_{0.6}$ -Fe₃O₄ NPs.

Figure S6. EDS and line scanning of Pd₁Cu_{0.6}–Fe₃O₄ NPs; (a) EDS images, (b) line scanning spectrum.

S15

Figure S7. XRD patterns of (a) Pd–Fe₃O₄ NPs; (b) Pd₁Cu_{0.3}–Fe₃O₄ NPs; (c) Pd₁Cu_{0.6}– Fe₃O₄ NPs; (d) Pd₁Cu₁–Fe₃O₄ NPs; (e) Pd_{0.5}Cu₁–Fe₃O₄ NPs; (f) Pd_{0.2}Cu₁–Fe₃O₄ NPs; (g) the diffraction peaks of Pd (111) plane and Pd_xCu_y (111) plane NPs on Fe₃O₄.

Figure S8. Pd 3d XPS spectra of (a) Pd–Fe₃O₄ NPs; (b) Pd₁Cu_{0.3}–Fe₃O₄ NPs; (c) Pd₁Cu₁–Fe₃O₄ NPs; (d) Pd_{0.5}Cu₁–Fe₃O₄ NPs; (e) Pd_{0.2}Cu₁–Fe₃O₄ NPs.

Figure S9. Cu 2p XPS spectra of (a) $Pd_1Cu_{0.3}$ -Fe₃O₄ NPs; (b) Pd_1Cu_1 -Fe₃O₄ NPs; (c) $Pd_{0.5}Cu_1$ -Fe₃O₄ NPs; (d) $Pd_{0.2}Cu_1$ -Fe₃O₄ NPs; (e) Cu-Fe₃O₄ NPs.

Figure S10. XPS spectra of the Pd $3d_{5/2}$ (left) and Cu $2p_{3/2}$ (right) regions of Pd_xCu_y-Fe₃O₄ NPs.

4. Supplementary figures and tables

Table S1. Comparison of catalytic activity of $Pd_1Cu_{0.6}$ –Fe₃O₄ NPs with other reported heterogeneous catalytic systems for *N*-methylation using methanol

	NH₂ + МеОН —	Cata Ba Ter Tii	alyst ase mp. me	H N N	le
Entry	Catalyst	Base	Temperatrue	Time	Yield (%)
1	Soild Molecular NHC-Ir ¹	KO <i>t</i> Bu	130 °C	12 h	99
2	Pt/C ²	NaOH	140 °C	15 h	92
3	Pd/C ³	CH₃ONa	150 °C	12 h	99
4	Cp*lr@CTF ⁴	Cs ₂ CO ₃	125 °C	12 h	95
5	Pd@sPS-NMe2 ⁵	CH₃ONa	150 °C	10 h	97
6	Pd1Cu0.6-Fe3O4 (This work)	K ₂ CO ₃	140 °C	24 h	99

		PdCu NPs	3	Me N. Me
	+ MeOH	K ₂ CO ₃ (1 equi 140 °C, 24 ł	→ iv.) ı	
Entry	Supports (PdCu NPs)	Conversion (%)	Yield (%)	Pd:Cu ratio
1	Fe ₃ O ₄	93	93	1 :0.6
2	TiO ₂	82	82	1: 0.5
3	CeO ₂	85	85	1: 0.7
4	Al ₂ O ₃	84	84	1: 0.6

 Table S2. Comparison catalytic activity of PdCu nanoparticles on different supports.

Reaction conditions : 6.4 mol% of total metal contents, aniline (0.2 mmol), K_2CO_3 (0.2 mmol), MeOH (2 mL),140 °C, 24 h, GC yield

Catalyst	Pd (wt%)	Cu (wt%)
Pd ₁ Cu _{0.5} -TiO ₂	6.98	2.25
Pd ₁ Cu _{0.7} –CeO ₂	3.13	1.35
$Pd_1Cu_{0.6}-Al_2O_3$	9.05	3.36

Figure S11. ICP-AES data of PdCu NPs with different supports.

Figure S12. SEM images of (a) TiO₂ NPs; (b) PdCu–TiO₂ NPs; (c) CeO₂ NPs; (d) PdCu–CeO₂ NPs; (e) Al₂O₃ NPs; (f) PdCu–Al₂O₃ NPs.

Figure S13. HR-TEM images of (a) PdCu–TiO₂ NPs; (b) PdCu–CeO₂ NPs; (c) PdCu–Al₂O₃ NPs.

5. Kinetic Experiment

Figure S14. ¹H NMR data analysis of deuterium labeling test.

Figure S15. The ratio of non-deuterated (2a) and deuterated (3a) products from the reactions employing CH₃OH and CD₃OD

6. Computational Details

Density functional theory (DFT) calculations were performed using the Vienna *ab initio* simulation package (VASP)⁶ with employing the projector augmented wave (PAW) method⁷ and the plane-wave cutoff energy of 500 eV. The exchange-correlation energy was described using the revised Perdew–Burke–Ernzerhof (RPBE) functional. ⁸ Convergence thresholds for the electronic and ionic self-consistency were set as 10^{-5} and 10^{-4} eV, respectively, and the dimensions of *k*-point grids and lattice parameters of corresponding simulation cells are listed in **Table S3**.

Using the fully optimized bulk structures of Pd_xCu_y , four layer of 4×4 (111) slab models were constructed with including an additional 25 Å vacuum space along the z-direction (**Figure S17a**). During the optimization of slab models, two bottommost layers were fixed, and the dipole correction was applied along the z-direction. Reciprocal spaces were sampled using Γ centered ($6 \times 6 \times 1$) *k*-point meshes. Using the most stable surface slab model among the two possible surface geometries (**Table S4**), we calculated the hydrogen binding energies (ΔE_H) of all possible 3-fold hollow sites on the surface (**Figure S17b and Table S5**). For the calculation of the projected density of states (PDOS) of surface atoms, we employed the Blochl tetrahedron method.⁹

To calculate Fe₃O₄ and Fe₃O₄-supported catalyst models (Pd–Fe₃O₄ and Cu–Fe₃O₄), we performed spin-polarized DFT calculations by applying the Hubbard correction on Fe *d* states using U = 4.50 and J = 0.89 eV.¹⁰ Averaged magnetic moment of Fe was 4.03 $\mu_{\rm B}$, in agreement with the experimental value of 4.05 $\mu_{\rm B}$.¹¹

Fe₃O₄ (111) surface slab models were constructed using the fully optimized bulk structure of Fe₃O₄ with including an additional 25 Å of vacuum layer along the z-direction. During the geometry optimization of the slab models of Fe₃O₄, the bottommost three layers were kept fixed. Then, two layer of (12×12) Cu (111) slab or two layer of (11×11) Pd (111) slab was interfaced with the Fe₃O₄ (111) surface slab (**Figure S18**). We modified the in-plane lattice parameters of Cu or Pd to be matched with those of Fe₃O₄, applying a small lattice strain of +0.148 % to Cu and -0.449 % to Pd (**Figure S18**). We examined possible stacking configurations of interfacial models, among which the most stable one was chosen for the analyses. (**Table S6**) Reciprocal space of these Cu–Fe₃O₄ and Pd–Fe₃O₄ slab models was sampled only at the Γ -point. Due to the large computational cost of employing the Blochl tetrahedron method, we employed the Gaussian smearing of 0.05 eV to calculate the PDOS of the Cu–Fe₃O₄ and Pd–Fe₃O₄ and Pd–Fe₃O₄ slab models.

Pd ₅ Cu ₂₇ (P	d _{0.19} Cu ₁)								
								635	
RA1 -121.328 eV	RA2 -121.230 eV	RA3 -121.411 eV	RA4 -121.194 eV	RA5 -121.156 eV	RA6 -121.407 eV	RA7 -121.389 eV	RA8 -121.312 eV	RA9 -121.200 eV	RA10 -121.433 eV
Pd ₁₁ Cu ₂₁ (F	Pd _{0.52} Cu ₁)								
RA1 -131.264 eV	RA2 -131.090 eV	RA3 -131.246 eV	RA4 -131.209 eV	RA5 -131.264 eV	RA6 -131.137 eV	RA7 -131.141 eV	RA8 -131.309 eV	RA9 -131.003 eV	RA10 -131.217 eV
Pd ₁₆ Cu ₁₆ (F	Pd₁Cu₁)								
555									
RA1 -138.737 eV	RA2 -138.605 eV	RA3 -138.684 eV	RA4 -138.777 eV	RA5 -138.772 eV	RA6 -138.943 eV	RA7 -138.819 eV	RA8 -138.759 eV	RA9 -138.561 eV	RA10 -138.685 eV
Pd ₂₀ Cu ₁₂ (F	Pd₁Cu _{0.6})								
RA1 -144.063 eV	RA2 -144.204 eV	RA3 -144.133 eV	RA4 -144.133 eV	RA5 -144.210 eV	RA6 -144.174 eV	RA7 -144.071 eV	RA8 -144.216 eV	RA9 -144.264 eV	RA10 -144.161 eV
Pd ₂₅ Cu ₇ (P	d ₁ Cu _{0.28})								
RA1 -150.697 eV	RA2 -150.729 eV	RA3 -150.668 eV	RA4 -150.726 eV	RA5 -150.568 eV	RA6 -150.757 eV	RA7 -150.674 eV	RA8 -150.594 eV	RA9 -150.782 eV	RA10 -150.578 eV

Figure S16. Ten atomic structures of fcc PdCu random alloy (RA) models with their optimized energies using the density functional theory (DFT) calculation. The most stable structure at each composition is indicated using a red box.

FCC (111) surface

Figure S17. (a) DFT-optimized fcc (111) slab models of Pd_xCu_y alloy. (b) On the fcc (111) surface, there are 32 different 3-fold sites consisting of 16 hcp sites and 16 fcc sites.

Figure S18. DFT-optimized (111) slab models of (a) Fe_3O_4 , (b) $Cu-Fe_3O_4$, and (c) $Pd-Fe_3O_4$. In the top view of Fe_3O_4 , blue line denotes the surface unit cell of Fe_3O_4 (111) slab.

Figure S19. Projected density of states (PDOS) of *d*-electrons of (a) Pd and (b) Cu. Solid vertical line denotes the weight-averaged value of the PDOS, i.e., the location of the d-band center. Bottom panels are PDOS of Pd and Cu, supported on the Fe₃O₄.

Figure S20. Correlation between the estimated turnover frequency (TOF) and the reaction yield of *N*-methylation produce with varying the composition of Pd_xCu_y .

Alloy	Lattice parameter	<i>k</i> -point meshes
Pd	a,b,c = 3.991 Å	
	<i>α=β=γ=</i> 90°	Mankharat Dack (16 16 16)
Cu	<i>a,b,c</i> = 3.680 Å	$MOTINTOIST-Pack(10 \times 10 \times 10)$
	<i>α=β=γ=</i> 90°	
Pd5Cu27 (Pd0.19Cu1)	a,b,c = 7.457 Å	
	<i>α=β=γ=</i> 90°	
Pd ₁₁ Cu ₂₁ (Pd _{0.52} Cu ₁)	a,b,c = 7.574 Å	
	<i>α=β=γ=</i> 90°	
Pd ₁₆ Cu ₁₆ (Pd ₁ Cu ₁)	a,b,c = 7.671 Å	
	<i>α=β=γ=</i> 90°	Mankharat Dack (9 × 9 × 9)
Pd ₂₀ Cu ₁₂ (Pd ₁ Cu _{0.6})	a,b,c = 7.748 Å	MOTINTOISL-Pack ($6 \times 6 \times 6$)
	<i>α=β=γ=</i> 90°	
Pd ₂₅ Cu ₇ (Pd ₁ Cu _{0.28})	a,b,c = 7.845 Å	
	<i>α=β=γ=</i> 90°	
Fe ₃ O ₄	a,b,c = 8.789 Å	
	<i>α=β=γ=</i> 90.396°	

Table S3. Dimensions of *k*-point meshes and corresponding lattice parameters of the simulation cell.

Table S4. DFT-calculated total energy of the DFT-optimized Pd_xCu_y (111) surfaces.

Alloy	Surfaces	Area (Ų)	DFT energy (eV)
Pd5Cu27 (Pd0.19Cu1)	Surface 1	96.318	-229.618 (stable)
	Surface 2		-229.611
Pd ₁₁ Cu ₂₁ (Pd _{0.52} Cu ₁)	Surface 1	99.350	-249.159
	Surface 2		-249.178 (stable)
Pd16Cu16 (Pd1Cu1)	Surface 1	101.913	-264.000 (stable)
	Surface 2		-263.945
Pd ₂₀ Cu ₁₂ (Pd ₁ Cu _{0.6})	Surface 1	103.987	-274.132 (stable)
	Surface 2		-274.034
Pd ₂₅ Cu ₇ (Pd ₁ Cu _{0.28})	Surface 1	106.609	-286.732 (stable)
	Surface 2		-286.638

Alloy surface		∆ <i>Е</i> н (eV)
Pd5Cu27 (Pd0.19Cu1)	fcc1	-0.027
	fcc2	-0.036
	fcc3	0.027
	fcc4	-0.027
	fcc5	-0.026
	fcc6	-0.124
	fcc7	-0.146
	fcc8	0.019
	fcc9	-0.059
	fcc10	-0.010
	fcc11	-0.059
	fcc12	0.030
	fcc13	-0.053
	fcc14	-0.047
	fcc15	-0.079
	fcc16	1.592
	hcp1	-0.081
	hcp2	-0.160 (stable)
	hcp3	0.014
	hcp4	-0.051
	hcp5	-0.085
	hcp6	0.036
	hcp7	-0.114
	hcp8	0.097
	hcp9	-0.069
	hcp10	-0.077
	hcp11	-0.008
	hcp12	-0.107
	hcp13	-0.107
	hcp14	0.122
	hcp15	-0.035
	hcp16	0.188
Pd ₁₁ Cu ₂₁ (Pd _{0.52} Cu ₁)	fcc1	-0.180
	fcc2	-0.292 (stable)
	fcc3	-0.172
	fcc4	-0.061
	fcc5	-0.090
	fcc6	-0.040
	fcc7	-0.092
	fcc8	-0.142
		60 A

Table S5. Computed 3-fold binding energies of Pd_xCu_y.

	fcc9	-0.155
	fcc10	-0.024
	fcc11	-0.125
	fcc12	0.039
	fcc13	-0.193
	fcc14	-0.070
	fcc15	0.080
	fcc16	-0.094
	hcp1	-0.238
	hcp2	-0.154
	hcp3	-0.061
	hcp4	-0.053
	hcp5	-0.032
	hcp6	-0.179
	hcp7	-0.163
	hcp8	-0.170
	hcp9	-0.193
	hcp10	0.002
	hcp11	-0.014
	hcp12	-0.102
	hcp13	-0.092
	hcp14	0.123
	hcp15	0.000
	hcp16	-0.067
Pd ₁₆ Cu ₁₆ (Pd ₁ Cu ₁)	fcc1	-0.250
	fcc2	-0.181
	fcc3	-0.316 (stable)
	fcc4	-0.124
	fcc5	-0.235
	fcc6	-0.192
	fcc7	0.069
	fcc8	-0.248
	fcc9	-0.217
	fcc10	-0.168
	fcc11	-0.287
	fcc12	-0.272
	fcc13	-0.269
	fcc14	-0.143
	fcc15	-0.207
	fcc16	-0.194
	hcp1	-0.088
	hcp2	-0.266
	hcp3	-0.191

	hcp4	-0.228
	hcp5	-0.207
	hcp6	-0.171
	hcp7	-0.085
	hcp8	-0.110
	hcp9	-0.227
	hcp10	-0.168
	hcp11	-0.188
	hcp12	-0.154
	hcp13	-0.293
	hcp14	-0.085
	hcp15	-0.187
	hcp16	-0.211
Pd ₂₀ Cu ₁₂ (Pd ₁ Cu _{0.6})	fcc1	-0.185
	fcc2	-0.242
	fcc3	-0.373
	fcc4	-0.295
	fcc5	-0.351
	fcc6	-0.179
	fcc7	-0.339
	fcc8	-0.402 (stable)
	fcc9	-0.209
	fcc10	-0.172
	fcc11	-0.066
	fcc12	-0.270
	fcc13	-0.253
	fcc14	-0.258
	fcc15	-0.336
	fcc16	-0.392
	hcp1	-0.267
	hcp2	-0.191
	hcp3	-0.328
	hcp4	-0.344
	hcp5	-0.262
	hcp6	-0.157
	hcp7	-0.211
	hcp8	-0.351
	hcp9	-0.284
	hcp10	-0.316
	-	
	hcp11	-0.104
	hcp11 hcp12	-0.104 -0.206
	hcp11 hcp12 hcp13	-0.104 -0.206 -0.262

	hcp15	-0.222
	hcp16	-0.223
Pd ₂₅ Cu ₇ (Pd ₁ Cu _{0.28})	fcc1	-0.367
	fcc2	-0.319
	fcc3	-0.408
	fcc4	-0.369
	fcc5	-0.357
	fcc6	-0.300
	fcc7	-0.416
	fcc8	-0.433
	fcc9	-0.382
	fcc10	-0.205
	fcc11	-0.422
	fcc12	-0.444 (stable)
	fcc13	-0.247
	fcc14	-0.204
	fcc15	-0.291
	fcc16	-0.241
	hcp1	-0.185
	hcp2	-0.302
	hcp3	-0.295
	hcp4	-0.181
	hcp5	-0.298
	hcp6	-0.312
	hcp7	-0.365
	hcp8	-0.386
	hcp9	-0.199
	hcp10	-0.307
	hcp11	-0.397
	hcp12	-0.415
	hcp13	-0.210
	hcp14	-0.265
	hcp15	-0.306
	hcp16	-0.321

 $\Delta E_{H} = E(*H) - E(*) - 0.5E(H_2)$, * denotes bare surface slab.

Alloy	Strain on M (%)	Stacking configuration	DFT energy (eV)
[11 x 11] Pd (111)	-0.449	1	-3433.613
on [5 x 5] Fe3O4 (111)		2	-3433.608
		3	-3433.621 (stable)
		4	-3433.616
		5	-3433.609
		6	-3433.615
[12 x 12] Cu (111)	+0.148	1	-3215.509
on [5 x 5] Fe3O4 (111)		2	-3215.494
		3	-3215.509
		4	-3215.489
		5	-3215.519 (stable)
		6	-3211.589

Table S6. Computed total energies of possible stacking configurations of the interfacial supercells.

7. Recycle Experiment

Figure S21. Recyclability of $Pd_1Cu_{0.6}$ –Fe₃O₄ NPs for *N*-methylation of aniline.

(a) After 1 catalytic cycle

(1) K_2CO_3 1 equiv.

(2) K₂CO₃ 0.5 equiv.

(3) K₂CO₃ 0.25 equiv.

(b) After 3 catalytic cycle

(1) K₂CO₃ 1 equiv.

(2) K₂CO₃ 0.5 equiv.

(3) K₂CO₃ 0.25 equiv.

Figure S22. HR-TEM images of NPs; (a) $Pd_1Cu_{0.6}$ -Fe₃O₄ NPs after 1 catalytic cycle; (b) $Pd_1Cu_{0.6}$ -Fe₃O₄ NPs after 3 catalytic cycle.

	Pd (wt%)	Cu (wt%)		
Fresh cataly	vst 8.42	2.71		
Recycle 1		Recycle 3		
Base (K ₂ CO ₃)	Pd (wt%)	Cu (wt%)	Pd (wt%)	Cu (wt%)
0.25 equiv.	8.22	2.55	8.00	2.54
0.5 equiv.	7.76	2.49	7.83	2.51
1 equiv.	7.38	2.35	6.35	2.03

Figure S23. ICP-AES data of PdCu-Fe₃O₄ NPs after catalytic cycle.

8. NMR spectra

N-Methylaniline,² 2a

A yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (t, *J* = 7.8 Hz, 2H), 6.71 (t, *J* = 7.5 Hz, 1H), 6.62 (d, *J* = 7.9 Hz, 2H), 3.75–3.60 (br, 1H), 2.84 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 149.30, 129.18, 117.24, 112.41, 30.71.

N-Methylanisidine,³ 2b

A colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.79 (d, *J* = 8.9 Hz, 2H), 6.58 (d, *J* = 8.8 Hz, 2H), 3.74 (s, 3H), 2.79 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 152.08, 143.72, 114.91, 113.65, 55.87, 31.63.

N-Methyl-[1,1'-biphenyl]-4-amine,¹² 2c

A pale yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 7.7 Hz, 2H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.39 (t, *J* = 7.7 Hz, 2H), 7.24 (m, 1H), 6.69 (d, *J* = 8.5 Hz, 2H), 3.79 (s, 1H), 2.89 (s, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 148.79, 141.35, 130.16, 128.69, 127.94, 126.33, 126.06, 112.69, 30.79.

4-Fluoro-*N***-methylaniline,² 2d** A yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.02–6.81 (m, 2H), 6.64–6.40 (m, 2H), 3.59 (s, 1H), 2.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.78 (d, *J* = 234.3 Hz), 145.70, 115.56 (d, *J* = 22.3 Hz), 113.09 (d, *J* = 7.4 Hz), 31.29.

N,4-Dimethylaniline,¹ 2e

A yellow liquid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.00 (d, *J* = 8.0 Hz, 2H), 6.55 (d, *J* = 8.0 Hz, 2H), 3.60 (br, 1H), 2.82 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.16, 129.69, 126.45, 112.60, 31.09, 20.38.

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} 11 (ppm)

4-*tert*-Butyl-*N*-methylaniline,² 2f

A yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (d, *J* = 8.0 Hz, 2H), 6.58 (s, 2H), 3.45 (s, 1H), 2.81 (s, 3H), 1.28 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 147.02, 140.11, 125.99, 112.26, 33.86, 31.58, 31.01.

N,3-Dimethylaniline,¹ 2g

A colorless liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.08 (t, *J* = 7.8 Hz, 1H), 6.54 (d, *J* = 7.5 Hz, 1H), 6.44–6.43 (m, 2H), 3.66 (s, 1H), 2.83 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.40, 138.96, 129.06, 118.19, 113.16, 109.62, 30.76, 21.62.

N,2-Dimethylaniline,¹ 2h

A colorless liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (t, *J* = 7.9 Hz, 1H), 7.06 (d, *J* = 7.3 Hz, 1H), 6.75–6.50 (m, 2H), 3.57 (s, 1H), 2.90 (s, 3H), 2.14 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.22, 129.88, 127.17, 121.88, 116.84, 109.12, 30.75, 17.36.

N,3,5-Trimethylaniline,¹ 2i

A yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.38 (s, 1H), 6.26 (s, 2H), 3.53 (s, 1H), 2.81 (s, 3H), 2.25 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 149.53, 138.88, 119.32, 110.44, 30.85, 21.54.

4-Ethyl-*N*-methylaniline,³ 2j

A yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.03 (d, *J* = 8.0 Hz, 2H), 6.57 (d, *J* = 8.0 Hz, 2H), 3.57 (br, 1H), 2.82 (s, 3H), 2.55 (q, *J* = 7.6 Hz, 2H), 1.19 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.35, 133.15, 128.52, 112.59, 31.05, 27.94, 16.03.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 11 (ppm)

N-Methyl-4-(propan-2-yl)aniline,³ 2k

A yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.07 (d, *J* = 8.4 Hz, 2H), 6.58 (d, *J* = 8.5 Hz, 2H), 2.83 (s, 4H), 1.22 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.40, 137.83, 127.04, 112.52, 33.16, 31.01, 24.26.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

4-Methylamino-benzamide,13 2I

A brown solid. ¹H NMR (400 MHz, DMSO- d_6) δ 7.66 (d, J = 8.3 Hz, 2H), 7.55 (s, 1H), 6.85 (s, 1H), 6.50 (d, J = 8.4 Hz, 2H), 6.17 (s, 1H), 2.70 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.52, 152.67, 129.50, 121.13, 110.72, 29.77.

N-Methyl-pyridin-3-amine,² 2m

A yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 2.9 Hz, 1H), 7.95 (dd, *J* = 4.7, 1.4 Hz, 1H), 7.12–7.02 (m, 1H), 6.93–6.81 (m, 1H), 3.81 (s, 1H), 2.84 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 145.17, 138.49, 135.67, 123.70, 118.03, 30.27.

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

N-Methylquinolin-5-amine,¹⁴ 2n

A yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.90 – 8.80 (m, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 7.60 (t, *J* = 8.1 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.36 – 7.28 (m, 1H), 6.63 (d, *J* = 7.6 Hz, 1H), 4.46 (br, 1H), 3.02 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.90, 149.15, 144.78, 130.45, 128.72, 119.22, 118.42, 118.15, 103.94, 30.89.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

N-Methyl-1,3-benzodioxol-5-amine,¹⁴ 20

A yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.79 – 6.55 (m, 1H), 6.25 (d, *J* = 2.5 Hz, 1H), 6.04 (d, *J* = 8.3, 1H), 5.85 (s, 2H), 3.51 (br, 1H), 2.79 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.32, 145.22, 139.50, 108.56, 103.75, 100.51, 95.55, 31.60.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

4-Benzoyl-*N*-methylaniline,¹⁵2p

A yellow soild. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77-7.17 (m, 4H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 2H), 6.59 (d, *J* = 8.8 Hz, 2H), 4.29 (s, 1H), 2.92 (d, *J* = 5.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.26, 153.09, 139.19, 132.95, 131.16, 129.41, 128.01, 125.81, 110.94, 30.04.

S58 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1-Methyl-4-phenylpiperidine,¹⁶ 2q

A yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.05 (m, 5H), 2.97 (d, *J* = 11.2 Hz, 2H), 2.56 – 2.39 (m, 1H), 2.32 (s, 3H), 2.15 – 1.95 (m, 2H), 1.92 – 1.73 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.31, 128.40, 126.85, 126.11, 56.38, 46.49, 42.06, 33.50.

1-Methyl-4-phenylpiperazine,¹⁶ 2r

A yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.21 (m, 2H), 6.94 (d, *J* = 7.9 Hz, 2H), 6.86 (t, *J* = 7.4 Hz, 1H), 3.24 – 3.20 (m, 4H), 2.62 – 2.55 (m, 4H), 2.36 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.25, 129.09, 119.69, 116.05, 55.12, 49.06, 46.12.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3-(10,11-Dihydro-5*H*-dibenzo[*b*,*f*]azepin-5-yl)-*N*,*N*-dimethylpropan-1-amine (Imipramine),¹⁷ 4a

A yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 – 7.00 (m, 6H), 6.93 – 6.85 (m, 2H), 3.76 (t, *J* = 6.9 Hz, 2H), 3.15 (s, 4H), 2.32 (t, *J* = 7.3 Hz, 2H), 2.23 – 2.05 (m, 6H), 1.73 (p, *J* = 7.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.29, 134.21, 129.77, 126.35, 122.39, 119.99, 57.63, 48.82, 45.44, 32.21, 26.09

N-(Trideuteriomethyl)-aniline¹⁸, 3a

A yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (t, *J* = 7.9 Hz, 2H), 6.71 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.37, 129.20, 117.22, 112.41, 29.73

9. Reference

- J. Wang, J. Wu, Z.-N. Chen, D. Wen, J. Chen, Q. Zheng, X. Xu, T. Tu, *J. Catal.*, 2020, 389, 337-344.
- M. A. R. Jamil, A. S. Touchy, M. N. Rashed, K. W. Ting, S. M. A. H. Siddiki, T. Toyao, Z. Maeno and K.-i. Shimizu, *J. Catal.*, **2019**, *371*, 47-56.
- L. Jiang, F. Guo, Y. Wang, J. Jiang, Y. Duan, Z. Hou, Asian J. Org. Chem. 2019, 8, 2046-2049.
- 4. P. Liu, J. Yang, Y. Ai, S. Hao, X. Chen, F. Li, J. Catal., 2021, 396, 281-290
- L. Jiang, X. Zhang, Y. Wang, F. Guo, Z. Hou, Asian J. Org. Chem. 2021, 10, 2165-2169.
- 6. G. Kresse, J. Furthmuller, Phys. Rev. B Condens. Matter 1996, 54, 11169-11186.
- 7. P. E. Blochl, Phys. Rev. B Condens. Matter 1994, 50, 17953-17979.
- B. Hammer, L. B. Hansen, J. K. Nørskov, *Phys. Rev. B Condens. Matter* **1999**, 59, 7413-7421.
- P. E. Blochl, O. Jepsen, O. K. Andersen, *Phys. Rev. B Condens. Matter* **1994**, *49*, 16223.
- (a) V. I. Anisimov, F. Aryasetiawan, A. I. Lichtenstein, J. Condens. Matter Phys.
 1997, 9, 767-808.
 - (b) S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, *Phys. Rev. B* **1998**, *57*, 1505-1509.
 - (c) M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, T. Fukushima, S. Picozzi, U. Gösele, *Adv. Mater.* **2009**, *21*, 4452-4455.
- 11.L. W. Finger, R. M. Hazen, A. M. Hofmeister, *Phys.Chem.Miner.*, **1986**, *13*, 215-220.
- 12. D. Wang, D. Kuang, F. Zhang, C. Yang, X. Zhu, *Adv. Synth. Catal.* **2015**, 357, 714-718.
- 13.P. Piehl, R. Amuso, A. Spannenberg, B. Gabriele, H. Neumann, M. Beller, *Catal. Sci. Technol.* **2021**, *11*, 2512-2517.
- 14. J. Chen, J. Wu, T. Tu, ACS Sustain. Chem. Eng. 2017, 5, 11744-11751.
- 15.A. Lator, S. Gaillard, A. Poater, J. L. Renaud, Org. Lett. 2018, 20, 5985-5990.

- 16.K. Polidano, B. D. W. Allen, J. M. J. Williams, L. C. Morrill, ACS Catal. 2018, 8, 6440-6445.
- 17. K. Natte, H. Neumann, R. V. Jagadeesh, M. Beller, Nat. Commun. 2017, 8, 1344.
- 18. P. Liu, N. T. Tung, X. Xu, J. Yang, F. Li, *J*. Org. Chem., **2021**, 86, 2621-2631.