SUPPORTING INFORMATION

Atomic-Scale Changes of Silica-Supported Catalysts with Nanocrystalline or Amorphous Gallia Phases: Implications of Hydrogen Pretreatment for their Selectivity for Propane Dehydrogenation

Pedro Castro-Fernández,^a Alexander I. Serykh,^b Alexander V. Yakimov,^c Igor P. Prosvirin,^d Andrey V. Bukhtiyarov,^d Paula M. Abdala,^{*,a} Christophe Copéret,^b Alexey Fedorov,^{*,a} Christoph R. Müller^{*,a}

^a Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland

^b Zelinsky Institute of Organic Chemistry, RAS, Moscow, 119991, Russia

^c Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland

^d Boreskov Institute of Catalysis, SB RAS, 630090 Novosibirsk, Russia

* Corresponding authors. E-mails: abdalap@ethz.ch; fedoroal@ethz.ch; muelchri@ethz.ch

Figures

Figure S1. Results of EXAFS fittings for $\gamma\text{-}Ga_2O_3/SiO_2\text{-}H_2$ and $Ga/SiO_2\text{-}H_2.$

Fitting results for $\gamma\text{-}Ga_2O_3/SiO_2$ and Ga/SiO_2 have been published in our previous work.^1

Figure S2. Py-FTIR results for calcined and H_2 -treated materials evacuated under ca. 10^{-5} mbar at RT, 100 and 200 °C.

Py-FTIR results for γ -Ga₂O₃/SiO₂ and Ga/SiO₂ have been published in our previous work.¹

Figure S3. STEM-EDX images of calcined and H_2 -treated catalysts.

Figure S4. XPS Si2p, C1s, Ga3d, O2s, Si2s, Ga2p3/2 and survey spectra of γ -Ga₂O₃/SiO₂. XPS spectra were acquired on calcined materials (initial), after treating them in a reactor under H₂ flow at 550 °C (H₂-550 °C) followed by the exposure to air during material transfer, and reduced in situ at 300 °C and 450 °C in the pretreatment chamber of the XPS instrument (labelled H₂-300 °C and H₂-450 °C, respectively).

Figure S5. XPS Si2p, C1s, Ga3d, O2s, Si2s, Ga2p3/2 and survey spectra of Ga/SiO₂. XPS spectra were acquired on calcined materials (initial), after treating them in a reactor under H₂ flow at 550 °C (H₂-550 °C) followed by the exposure to air during material transfer, and reduced in situ at 300 °C and 450 °C in the pretreatment chamber of the XPS instrument (labelled H₂-300 °C and H₂-450 °C, respectively).

Figure S6. In situ Ga K-edge XANES derivative plot during H₂ treatment of γ -Ga₂O₃/SiO₂ (50-550 °C). Arrows indicate gradual changes in intensities at increasing temperatures.

Figure S7. Linear combination fitting analysis results of Ga K-edge XANES from γ -Ga₂O₃/SiO₂-H₂ using γ -Ga₂O₃/SiO₂ and Ga/SiO₂ as components. Fitting results gave a 52% fraction of γ -Ga₂O₃/SiO₂ and 48% fraction of Ga/SiO₂-H₂ in γ -Ga₂O₃/SiO₂-H₂.

Figure S8. In situ reduced structure function plots for γ -Ga₂O₃/SiO₂-H₂ and γ -Ga₂O₃/SiO₂.

Figure S9. In situ pair distribution function plots comparing γ -Ga₂O₃/SiO₂-H₂ and γ -Ga₂O₃/SiO₂. The inset shows detail of the ca. 1.6-4 Å range, mainly influenced by the local structure.

Figure S10. EXAFS fittings of γ -Ga₂O₃/SiO₂-H₂ (left) and Ga/SiO₂-H₂ (right) including Ga–O, Ga–Ga and Ga–Si paths.

Tables

Material	Desorption T	E _{solv} ^a	DNP buildup	Measurement	Number of scans	
	(*C)		time ⁶ (sec)	time (n)		
γ -Ga ₂ O ₃ /SiO ₂	150	109	7.7	9.9	11896	
Ga/SiO ₂	150	52	7.1	11.1	13368	

 Table S1. ¹⁵N DNP SENS experimental parameters.

^a measured from the comparison between 1H NMR signals of TCE in the spectra with MW ON and OFF

^b T₁ relaxation times measured from saturation-recovery experiments with MW ON

Table S2. Results of EXAFS fittings including Ga–Si paths.

Material	Path	CN	Distance (Å)	$\sigma^2(\text{\AA}^2)$	R-factor
	Ga–O	5.2(2)	1.87(1)	0.011*	
v-Ga2O2/SiO2-H2	Ga–Ga	3.4(7)	2.99(1)	0.012*	0.002
<i>y-Ga₂O₃/BiO₂-H₂</i>	Ga–Ga	2.7(7)	3.36(1)	0.012*	0.002
	Ga–Si	1.0(7)	3.06(7)	0.012*	
	Ga–O	4.7(1)	1.86(1)	0.008*	
Ga/SiO ₂ -H ₂	Ga–Si	0.5(1)	2.80(7)	0.013*	0.003
	Ga–Ga	1.3(3)	2.91(2)	0.013*	

Table S3. Results of EXAFS fittings obtained when varying both the σ^2 factors and CN.

Material	Path	CN	Distance (Å)	$\sigma^2(\text{\AA}^2)$	R-factor
	Ga–O	5.5(5)	1.87(1)	0.011(1)	
$\gamma\text{-}Ga_2O_3/SiO_2\text{-}H_2$	Ga–Ga ₁	3(3)	2.99(3)	0.012(7)	0.004
	Ga–Ga ₂	3(3)	3.37(3)	0.012(7)	
	Ga–O	4.7(3)	1.86(1)	0.008(1)	
Ga/SiO ₂ -H ₂	Ga–Ga	1.1(5)	2.92(1)	0.011(3)	0.004

Material	Path	CN	Distance (Å)	$\sigma^2({\rm \AA}^2)$	R-factor
	Ga–O	5.4*	1.87(1)	0.011(1)	
$\gamma\text{-}Ga_2O_3/SiO_2\text{-}H_2$	Ga–Ga ₁	2*	2.99(3)	0.011(1)	0.004
	Ga–Ga ₂	3*	3.37(3)	0.011(1)	
	Ga–O	5.7*	1.85(1)	0.010(1)	
Ga/SiO ₂ -H ₂	Ga–Ga	2.0*	2.92(2)	0.015(2)	0.012

Table S4. Results of EXAFS fittings obtained when varying the σ^2 factors while fixing CN (to the values obtained for the calcined state).

References

P. Castro-Fernández, D. Mance, C. Liu, I. B. Moroz, P. M. Abdala, E. A. Pidko, C. Copéret, A. Fedorov, C.
 R. Müller, *ACS Catal.*, 2021, 11, 907–924.