Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Constructing superior Co-Mo HDS catalyst from a crystalline

precursor separated from the impregnating solution

Jilei Liang^{a, *}, Mengmeng Wu^a, Zhihai Zhang^a, Hao Wang^a, Tingting Huang^b, Lin Zhao^a, Yunqi Liu^{c, *}, Chenguang Liu^c

^aCollege of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, P. R. China.

^bState Key Laboratory Base for Eco-Chemical Engineering in College of Chemical

Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R.

China

^cState Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China University of Petroleum (East China), Qingdao 266555, P. R. China E-mail: liangjilei_httplan@126.com, liuyq@upc.edu.cn Table S1. Crystal data and structure refinement for Co4Mo12

Empirical formula	$Mo_{12}Co_4O_{52}H_{36}$
CCDC	1003735
Formula weight	2256
Crystal system	triclinic
Space group	P -1(2)
a (Å)	12.0949(19)
b (Å)	12.1400(19)
c (Å)	18.184(3)
α	90.011(16)
β	90.030(14)
γ	93.206(9)
V (Å ³)	2665.82(80)
Z	2
D_{calc} (g cm ⁻³)	2.7643

Crystal size	0.18×0.13×0.10 mm
Absorption coefficient (mm ⁻¹)	2.690
F(000)	2056
Theta range for data collection (°)	2.71-25.00
Limiting indices	$-13 \le h \le 12$
	-17≤ k ≤18
	-22≤1≤24
Data/restraints/parameters	11686/42/983
Goodness-of-fit on F^2	1.018
<i>T</i> (K)	293
λ (Å)	0.71073
$R_1^{a}, wR_2^{b} (I > 2\sigma(I))$	0.0483, 0.0822
R_1^a , wR_2^b (all data)	0.0893, 0.1027

 $\overline{{}^{\mathbf{a}}\mathbf{R}_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \cdot {}^{\mathbf{b}}w\mathbf{R}_{2} = \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]^{1/2}}$

Table S2 Bond valence sum calculations

Mo1 and Mo2						
Mo(1)-O(22)	2.01	Mo(2)-O(36)	2.04			
Mo(1)-O(16)	1.05	Mo(2)-O(4)	0.95			
Mo(1)-O(21)	0.93	Mo(2)-O(5)	0.72			
Mo(1)-O(10)	0.54	Mo(2)-O(25)	0.47			
Mo(1)-O(17)	0.37	Mo(2)-O(45)	0.40			
Mo(1)-O(8)	0.33	Mo(2)-O(20)	0.40			
Σ	5.24	Σ	4.98			
Mo3 and Mo4						
Mo(3)-O(15)	1.64	Mo(4)-O(42)	1.65			
Mo(3)-O(12)	0.94	Mo(4)-O4)	1.00			
Mo(3)-O(13)	0.87	Mo(4)-O(5)	0.79			
Mo(3)-O(6)	0.53	Mo(4)-O(49)	0.64			
Mo(3)-O(33)	0.41	Mo(4)-O(11)	0.45			
Mo(3)-O(49)	0.31	Mo(4)-O(6)	0.31			

Σ	4.70	Σ	4.84
Mo5 and Mo6			
Mo(5)-O(41)	1.00	Mo(6)-O(43)	1.09
Mo(5)-O(23)	0.99	Mo(6)-O(2)	0.97
Mo(5)-O(2)	0.63	Mo(6)-O(3)	0.92
Mo(5)-O(3)	0.61	Mo(6)-O(28)	0.49
Mo(5)-O(8)	0.50	Mo(6)-O(25)	0.46
Mo(5)-O(10)	0.36	Mo(6)-O(20)	0.37
Σ	4.08	Σ	4.30
Mo7 and Mo8			
Mo(7)-O(37)	1.43	Mo(8)-O(31)	1.56
Mo(7)-O(1)	0.89	Mo(8)-O(1)	0.86
Mo(7)-O(7)	0.85	Mo(8)-O(7)	0.80
Mo(7)-O(11)	0.42	Mo(8)-O(23)	0.64
Mo(7)-O(49)	0.37	Mo(8)-O(8)	0.56
Mo(7)-O(33)	0.36	Mo(8)-O(17)	0.57
Σ	4.32	Σ	4.99
Mo9 and Mo10			
Mo(9)-O(40)	1.49	Mo(10)-O(39)	2.25
Mo(9)-O(13)	0.96	Mo(10)-O(16)	0.68
Mo(9)-O(27)	0.73	Mo(10)-O(21)	0.59
Mo(9)-O(12)	0.70	Mo(10)-O(34)	0.50
Mo(9)-O(9)	0.48	Mo(10)-O(14)	0.44
Mo(9)-O(14)	0.45	Mo(10)-O(9)	0.23
Σ	4.79	Σ	4.68
Moll and Mol2			
Mo(11)-O(24)	1.84	Mo(12)-O(46)	1.92
Mo(11)-O(45)	1.02	Mo(12)-O(34)	1.06

0.91	Mo(11)-O(28)	Mo(12)-O(27)	0.83
0.88	Mo(11)-O(35)	Mo(12)-O(35)	0.74
0.80	Mo(11)-O(18)	Mo(12)-O(18)	0.54
0.20	Mo(11)-O(20)	Mo(12)-O(9)	0.21
5.64	Σ	Σ	5.29
	o1 and Co2		
0.39	Co(1)-O(52)	Co(2)-O(30)	0.39
0.38	Co(1)-O(21)	Co(2)-O(5)	0.39
0.37	Co(1)-O(12)	Co(2)-O(18)	0.37
0.35	Co(1)-O(32)	Co(2)-O(13)	0.33
0.33	Co(1)-O(7)	Co(2)-O(47)	0.32
0.28	Co(1)-O(44)	Co(2)-O(26)	0.31
2.10	Σ	Σ	2.10
	o3 and Co4		
0.36	Co(3)-O(29)	Co(4)-O(3)	0.38
0.35	Co(3)-O(51)	Co(4)-O(38)	0.35
0.34	Co(3)-O(1)	Co(4)-O(16)	0.34
0.31	Co(3)-O(4)	Co(4)-O(50)	0.32
0.29	Co(3)-O(2)	Co(4)-O(35)	0.28
0.29	Co(3)-O(48)	Co(4)-O(19)	0.25
1.95	Σ	Σ	1.92
0.29 0.29 1.95	Co(3)-O(2) Co(3)-O(48) Σ	Co(4)-O(35) Co(4)-O(19) Σ	0

Table S3 The bond length (Å) of Mo-O in Co4Mo12.

Mo1-Oa	1.678	Mo1-Ob	2.057	Mo1-Oc	1.895	
Mo2-Oa	1.670	Mo2-Ob	2.094	Mo2-Oc	1.897	
Mo3-Oa	1.730	Mo3-Ob	2.142	Mo3-Oc	1.922	
Mo4-Oa	1.743	Mo4-Ob	2.193	Mo4-Oc	1.948	
Mo5-Oa	1.881	Mo5-Ob	2.017	Mo5-Oc	1.980	
Mo6-Oa	1.846	Mo6-Ob	2.083	Mo6-Oc	1.883	

Mo7-Oa	1.765	Mo7-Ob	2.120	Mo7-Oc	1.906
Mo8-Oa	1.734	Mo8-Ob	2.003	Mo8-Oc	1.941
Mo9-Oa	1.734	Mo9-Ob	2.124	Mo9-Oc	1.973
Mo10-Oa	1.646	Mo10-Ob	2.072	Mo10-Oc	1.975
Mo11-Oa	1.677	Mo11-Ob	1.953	Mo11-Oc	1.975
Mo12-Oa	1.682	Mo12-Ob	2.032	Mo12-Oc	1.983
Σ	1.732	Σ	2.074	Σ	1.940

Fig. S2 TGA of the synthesized Co4Mo12

Fig. S4 The synthesized and simulated powder X-ray diffraction patterns of Co4Mo12

Fig. S5 Catalytic stability of crystalline Co4Mo12 sulfided at 400 °C.