Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting information for

Theoretical and experimental studies of high efficient all-solid Z-scheme TiO₂-TiC/g-C₃N₄ for photocatalytic CO₂ reduction via dry reforming of methane

Ziyi Li, Yu Mao*, Yufei Huang, Ding Wei, Ming Chen, Yangqiang Huang, Bo Jin, Xiao Luo*, Zhiwu Liang*

Joint International Center for CO₂ Capture and Storage (iCCS), Provincial Hunan Key

Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-

dioxide Emissions, College of Chemistry and Chemical Engineering, The Engineering

Research Center of Advanced Catalysis, Ministry of Education, Hunan University,

Changsha 410082, P. R. China

*CORRESPONDING AUTHORS:

1. Dr. Yu Mao

Tel.: +86-18216010211;

Email address: yumao@hnu.edu.cn

2. Dr. Xiao Luo

Tel.: +86-18627329998;

Email address: x_luo@hnu.edu.cn

3. Dr. Zhiwu Liang

Tel.: +86-13618481627; fax: +86-731-88573033;

E-mail address: zwliang@hnu.edu.cn

Figure S1. The diagram of the experimental device for photocatalytic CO_2 in the presence of CH_4 .

Figure S2. (a) N_2 physisorption isotherms and corresponding pore size distribution curves (inset) and (b) The CO₂ adsorption capacity of g-C₃N₄ and (25)TiO₂-TiC/g-C₃N₄(400).

Parameter	g-C ₃ N ₄	(25)TiO ₂ -TiC/g-C ₃ N ₄ (400)
Specific surface area (m ² /g)	16.920	21.503
Total pore volume (cm ³ /g)	0.087	0.078

Table S1. BET specific surface area and total pore volume of g-C₃N₄ and (25)TiO₂-TiC/g-C₃N₄(400).

	Level 1	Level 2	Level 3	Level 4
F _A : Absolute pressure (kPa)	10	20	30	40
F_B : CH ₄ to CO ₂ ratio	2:1	1:1	1:2	1:3
F _C : TiC loading (mg)	15	20	25	30
F _D : Calcination temperature (°C)	350	400	450	500

Table S2. Factors and levels of the orthogonal test.

	F _A :	F _B :	F _C :	F _D :
Experiment	pressure	mole ratio of	Loading of	calcination
Numbers	(kPa)	CH ₄ : CO ₂	TiC (mg)	temperature
				(°C)
1	10	2:1	15	350
2	10	1:1	20	400
3	10	1:2	25	450
4	10	1:3	30	500
5	20	2:1	20	450
6	20	1:1	15	500
7	20	1:2	30	350
8	20	1:3	25	400
9	30	2:1	25	500
10	30	1:1	30	450
11	30	1:2	15	400
12	30	1:3	20	350
13	40	2:1	30	400
14	40	1:1	25	350
15	40	1:2	20	500
16	40	1:3	15	450

Table S3. The detailed experimental conditions of four factors and four levels ($L_{16}(4^4)$) orthogonal test.

Experiment	H_2	СО	TOF _{H2}	TOF _{co}	Conversion
Numbers	(µmol)	(µmol)	$(\mu mol g^{-1} h^{-1})$	$(\mu mol g^{-1} h^{-1})$	rates of CH ₄
					(%)
1	0.21	0.56	1.07	2.8	1.8
2	0.38	1.39	1.91	6.95	1.584
3	0.21	1.18	1.05	5.91	0.6
4	0.20	0.70	1.00	3.49	3.29
5	0.34	1.04	1.71	5.22	1.53
6	0.36	0.57	1.79	2.83	1.58
7	0.39	0.81	1.96	4.06	1.12
8	0.19	1.65	0.93	8.27	1.46
9	0.40	1.50	1.99	7.52	2.89
10	0.23	0.86	1.14	4.28	1.22
11	0.21	2.16	1.04	10.78	1.373
12	0.40	1.33	1.98	6.24	1.23
13	0.36	2.03	1.79	10.17	3.43
14	0.29	1.22	1.45	6.11	0.66
15	0.17	1.15	0.87	5.74	1.08
16	0.27	1.38	1.34	6.89	1.01

Table S4. The experimental results of orthogonal test ($L_{16}(4^4)$).

Figure S3. X-ray diffraction patterns of (25)TiO₂-TiC/g-C₃N₄(350), (25)TiO₂-TiC/g-C₃N₄(400), (25)TiO₂-TiC/g-C₃N₄(450), (25)TiO₂-TiC/g-C₃N₄(500).

Figure S4. SEM patterns of (25)TiO₂-TiC/g-C₃N₄(350), (25)TiO₂-TiC/g-C₃N₄(400), (25)TiO₂-TiC/g-C₃N₄(450), (25)TiO₂-TiC/g-C₃N₄(500).

Figure S5. (a)UV-vis absorption spectra and (b) PL emission spectra of TiO₂-TiC/g-C₃N₄ calcinating under different temperature.

Figure S6. Illustrations of (a) $2 \times \sqrt{3}$ relaxed rectangular g-C₃N₄ monolayer; (b) original g-C₃N₄ monolayer; (c) TiO₂ (101) surface; (d) TiO₂/g-C₃N₄ heterostructure. Deep gray, blue, red, and light gray balls represent C, N, O and Ti atoms, respectively; this notation is used throughout the paper.

Figure S7. Illustrations of (a) $TiO_2-TiC/g-C_3N_4$ heterostructure with TiC on the TiO_2 side; (b) $TiO_2-TiC/g-C_3N_4$ heterostructure with TiC between TiO_2 and $g-C_3N_4$; (c) $TiO_2-TiC/g-C_3N_4$ heterostructure with $(TiC)_3$ on the TiO_2 side; (d) $TiO_2-TiC/g-C_3N_4$ heterostructure with $(TiC)_3$ between TiO_2 and $g-C_3N_4$.

Figure S8. Density of state (DOS) of four structures in Figure S7. (a) – (d) correspond to structures (a) – (d) in Figure S7.

Figure S9. Electrostatic potentials and density of states of (ab) the monolayer $g-C_3N_4$; (cd) TiO₂(101) surface. The DOS Figures in this study are plotted using DosPlotter module in Pymatgen python package (https://pymatgen.org/).

Figure S10. Calculated optical adsorption spectra of TiO₂(101), TCC-a, and TCC-b.