Supporting information for

Theoretical and experimental studies of high efficient all-solid Z-scheme TiO$_2$-TiC/g-C$_3$N$_4$ for photocatalytic CO$_2$ reduction via dry reforming of methane

Ziyi Li, Yu Mao*, Yufei Huang, Ding Wei, Ming Chen, Yangqiang Huang, Bo Jin, Xiao Luo*, Zhiwu Liang*

Joint International Center for CO$_2$ Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, College of Chemistry and Chemical Engineering, The Engineering Research Center of Advanced Catalysis, Ministry of Education, Hunan University, Changsha 410082, P. R. China

*CORRESPONDING AUTHORS:
1. Dr. Yu Mao
Tel.: +86-18216010211;
Email address: yumao@hnu.edu.cn

2. Dr. Xiao Luo
Tel.: +86-18627329998;
Email address: x_luo@hnu.edu.cn

3. Dr. Zhiwu Liang
Tel.: +86-13618481627; fax: +86-731-88573033;
E-mail address: zwliang@hnu.edu.cn
Figure S1. The diagram of the experimental device for photocatalytic CO$_2$ in the presence of CH$_4$.
Figure S2. (a) N$_2$ physisorption isotherms and corresponding pore size distribution curves (inset) and (b) The CO$_2$ adsorption capacity of g-C$_3$N$_4$ and (25)TiO$_2$-TiC/g-C$_3$N$_4$(400).
Table S1. BET specific surface area and total pore volume of g-C\textsubscript{3}N\textsubscript{4} and (25)TiO\textsubscript{2}-TiC/g-C\textsubscript{3}N\textsubscript{4}(400).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>g-C\textsubscript{3}N\textsubscript{4}</th>
<th>(25)TiO\textsubscript{2}-TiC/g-C\textsubscript{3}N\textsubscript{4}(400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific surface area (m2/g)</td>
<td>16.920</td>
<td>21.503</td>
</tr>
<tr>
<td>Total pore volume (cm3/g)</td>
<td>0.087</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>Level 1</td>
<td>Level 2</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>F_A: Absolute pressure (kPa)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>F_B: CH$_4$ to CO$_2$ ratio</td>
<td>2:1</td>
<td>1:1</td>
</tr>
<tr>
<td>F_C: TiC loading (mg)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>F_D: Calcination temperature (℃)</td>
<td>350</td>
<td>400</td>
</tr>
</tbody>
</table>
Table S3. The detailed experimental conditions of four factors and four levels (L₁₆(4⁴)) orthogonal test.

<table>
<thead>
<tr>
<th>Experiment Numbers</th>
<th>F₁: pressure (kPa)</th>
<th>F₂: mole ratio of CH₄: CO₂</th>
<th>F₃: Loading of TiC (mg)</th>
<th>F₄: calcination temperature (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>2:1</td>
<td>15</td>
<td>350</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1:1</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1:2</td>
<td>25</td>
<td>450</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>1:3</td>
<td>30</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>2:1</td>
<td>20</td>
<td>450</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>1:1</td>
<td>15</td>
<td>500</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>1:2</td>
<td>30</td>
<td>350</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>1:3</td>
<td>25</td>
<td>400</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>2:1</td>
<td>25</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>1:1</td>
<td>30</td>
<td>450</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>1:2</td>
<td>15</td>
<td>400</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>1:3</td>
<td>20</td>
<td>350</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>2:1</td>
<td>30</td>
<td>400</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>1:1</td>
<td>25</td>
<td>350</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>1:2</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>1:3</td>
<td>15</td>
<td>450</td>
</tr>
<tr>
<td>Experiment Numbers</td>
<td>H₂ (μmol)</td>
<td>CO (μmol)</td>
<td>TOF_{H₂} (μmol g⁻¹ h⁻¹)</td>
<td>TOF_{CO} (μmol g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
<td>0.56</td>
<td>1.07</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>0.38</td>
<td>1.39</td>
<td>1.91</td>
<td>6.95</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
<td>1.18</td>
<td>1.05</td>
<td>5.91</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>0.70</td>
<td>1.00</td>
<td>3.49</td>
</tr>
<tr>
<td>5</td>
<td>0.34</td>
<td>1.04</td>
<td>1.71</td>
<td>5.22</td>
</tr>
<tr>
<td>6</td>
<td>0.36</td>
<td>0.57</td>
<td>1.79</td>
<td>2.83</td>
</tr>
<tr>
<td>7</td>
<td>0.39</td>
<td>0.81</td>
<td>1.96</td>
<td>4.06</td>
</tr>
<tr>
<td>8</td>
<td>0.19</td>
<td>1.65</td>
<td>0.93</td>
<td>8.27</td>
</tr>
<tr>
<td>9</td>
<td>0.40</td>
<td>1.50</td>
<td>1.99</td>
<td>7.52</td>
</tr>
<tr>
<td>10</td>
<td>0.23</td>
<td>0.86</td>
<td>1.14</td>
<td>4.28</td>
</tr>
<tr>
<td>11</td>
<td>0.21</td>
<td>2.16</td>
<td>1.04</td>
<td>10.78</td>
</tr>
<tr>
<td>12</td>
<td>0.40</td>
<td>1.33</td>
<td>1.98</td>
<td>6.24</td>
</tr>
<tr>
<td>13</td>
<td>0.36</td>
<td>2.03</td>
<td>1.79</td>
<td>10.17</td>
</tr>
<tr>
<td>14</td>
<td>0.29</td>
<td>1.22</td>
<td>1.45</td>
<td>6.11</td>
</tr>
<tr>
<td>15</td>
<td>0.17</td>
<td>1.15</td>
<td>0.87</td>
<td>5.74</td>
</tr>
<tr>
<td>16</td>
<td>0.27</td>
<td>1.38</td>
<td>1.34</td>
<td>6.89</td>
</tr>
</tbody>
</table>
Figure S3. X-ray diffraction patterns of (25)TiO$_2$-TiC/g-C$_3$N$_4$(350), (25)TiO$_2$-TiC/g-C$_3$N$_4$(400), (25)TiO$_2$-TiC/g-C$_3$N$_4$(450), (25)TiO$_2$-TiC/g-C$_3$N$_4$(500).
Figure S4. SEM patterns of (25)TiO\textsubscript{2}-TiC/g-C\textsubscript{3}N\textsubscript{4}(350), (25)TiO\textsubscript{2}-TiC/g-C\textsubscript{3}N\textsubscript{4}(400), (25)TiO\textsubscript{2}-TiC/g-C\textsubscript{3}N\textsubscript{4}(450), (25)TiO\textsubscript{2}-TiC/g-C\textsubscript{3}N\textsubscript{4}(500).
Figure S5. (a) UV−vis absorption spectra and (b) PL emission spectra of TiO$_2$-TiC/g-C$_3$N$_4$ calcinating under different temperature.
Figure S6. Illustrations of (a) $2 \times \sqrt{3}$ relaxed rectangular g-C$_3$N$_4$ monolayer; (b) original g-C$_3$N$_4$ monolayer; (c) TiO$_2$ (101) surface; (d) TiO$_2$/g-C$_3$N$_4$ heterostructure. Deep gray, blue, red, and light gray balls represent C, N, O and Ti atoms, respectively; this notation is used throughout the paper.
Figure S7. Illustrations of (a) TiO$_2$-TiC/g-C$_3$N$_4$ heterostructure with TiC on the TiO$_2$ side; (b) TiO$_2$-TiC/g-C$_3$N$_4$ heterostructure with TiC between TiO$_2$ and g-C$_3$N$_4$; (c) TiO$_2$-TiC/g-C$_3$N$_4$ heterostructure with (TiC)$_3$ on the TiO$_2$ side; (d) TiO$_2$-TiC/g-C$_3$N$_4$ heterostructure with (TiC)$_3$ between TiO$_2$ and g-C$_3$N$_4$.
Figure S8. Density of state (DOS) of four structures in Figure S7. (a) – (d) correspond to structures (a) – (d) in Figure S7.
Figure S9. Electrostatic potentials and density of states of (ab) the monolayer $g\text{-C}_3N_4$; (cd) TiO$_2$(101) surface. The DOS Figures in this study are plotted using DosPlotter module in Pymatgen python package (https://pymatgen.org/).
Figure S10. Calculated optical adsorption spectra of TiO$_2$(101), TCC-a, and TCC-b.