Supporting information for

Direct Z-scheme WTe₂/InSe van der Waals heterostructure for overall water splitting

Rui Xiong¹, Yu Shu¹, Xuhui Yang², Yinggan Zhang³, Cuilian Wen¹, Masakazu Anpo⁴, Bo Wu¹, and

Baisheng Sa^{1,*}

¹Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China

²College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution

Control & Resource Reuse, Fujian Normal University, Fuzhou 350007 Fujian, P. R. China

³ College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational

Chemistry, Xiamen University, Xiamen 361005, P. R. China

⁴State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou

350116, P. R. China

Corresponding Author: *bssa@fzu.edu.cn (B. Sa)

Figure S1. (a)The phonon dispersion curves and (b) evolution of total energy and snapshot structure from AIMD simulations of WTe₂/InSe heterostructure.

Figure S2. The projected band structure of WTe₂/InSe vdW heterostructure by using HSE06+SOC functional.

Figure S3. The external potentials U_{e} and U_{h} as a function of pH value.

Figure S4. The different sites of Te atom in $WTe_2/InSe$ heterostructure

Figure S5. Proposed photocatalytic pathways and the most stable absorbed site of intermediates on the $WTe_2/InSe$ heterostructure (a) HER and (b) OER.

Figure S6. Free energy diagrams for OER on perfect $WTe_2/InSe vdW$ heterostructure.

w reg/mse neterostructure for three different stacking configurations					
Configuration	<i>a</i> (Å)	<i>d</i> (Å)	$E_{\rm f}({\rm eV})$	$E_{\rm b}({\rm meV/\AA})$	
Ι	7.032	3.53	-0.8098	16.465	
II	7.033	3.55	-0.8101	16.470	
III	7.033	3.55	-0.8096	16.455	

Table S1. The calculated lattice *a*, interlayer distant *d*, formation energy $E_{\rm f}$ and binding energy $E_{\rm b}$ of WTe₂/InSe heterostructure for three different stacking configurations

·/ -		-	
System	$\eta_{ m abs}(\%)$	$\eta_{ m cu}(\%)$	$\eta_{ m STH}(\%)$
WTe ₂	63.07	5.01	3.1
InSe	31.01	35.85	11.1
WTe ₂ /InSe	89.07	63.55	56.6

Table S2. Energy conversion efficiency of light absorption (η_{abs}), carrier utilization (η_{cu}) and STH (η_{STH}) for WTe₂ and InSe monolayers and WTe₂/InSe vdW heterostructure