Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

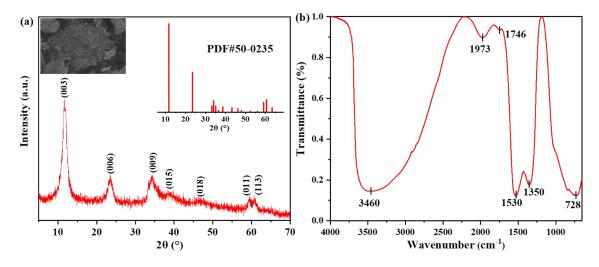
Promotional effect of Sn additive on the chlorine resistance over SnMnOx/LDO catalysts for synergistic decomposition of NOx and *o*-DCB

Jiaqing Wang^a, Yi Xing^{a,b}, Wei Su^{a,b,*}, Kongzhai Li^c, Zhiliang Ma^d, Wenbo Zhang^a,

Hui Zhang^a

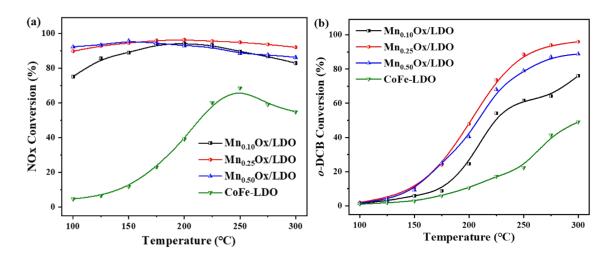
- ^a School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- ^b State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- ^c State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming, 650093, China

^d Tianjin Water Engineering Co., LTD, Tianjin, 300222, China


*Corresponding author.

E-mails address: <u>suwei@ustb.edu.cn</u> (W. Su)

Contents


- 1. Supplementary Figures
- 2.Supplementary Tables

1. Supplementary Figures

Fig. S1. (a) XRD pattern and SEM image (inset) of CoFe-LDH precursors, (b) FTIR spectrum of CoFe-LDH precursors.

The CoFe-LDH precursors were characterized by XRD, SEM and FTIR to determine the successful synthesis of hydrotalcite-like structures, and the results are presented in **Fig. S1**. The XRD pattern of the sample are consistent with that of the standard card (PDF# 50-0235), and the bands at 11.6, 23.4, 34.3, 38.7, 46.3, 59.6 and 60.8° are attributed to the characteristic peaks of CoFe-LDH¹. The SEM image shows that CoFe-LDH is stacked in unevenly sized lamellae, which conforms to the characteristics of hydrotalcite-like structure morphology¹. In **Fig. S1(b)**, the broad absorption peak at 3460 cm⁻¹ corresponds to the stretching vibration of hydroxyl groups from hydroxide and interlayer water molecules². The peak observed at 1530 cm⁻¹ belongs to the angular deformation vibration of H₂O molecules, and the peak at 1350 cm⁻¹ is ascribed to the C-O antisymmetric stretching vibration of carbonate ions³. The adsorption band around 728 cm⁻¹ are attributed to the vibrations of the M-O bond (M-OH, M-O-M or O-M-O)⁴. The results above confirmed the successful synthesis of the CoFe-LDH precursors.

Fig. S2. Catalytic activities of Mn_bOx/LDO with different Mn mass loading and CoFe-LDO, (a) NOx conversion and (b) *o*-DCB conversion.

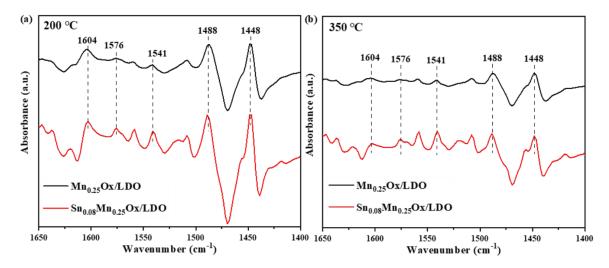


Fig. S3. FTIR spectra of pyridine adsorbed on the surface of $Mn_{0.25}Ox/LDO$ and $Sn_{0.08}Mn_{0.25}Ox/LDO$ catalysts at (a) 200 °C and (b) 350 °C.

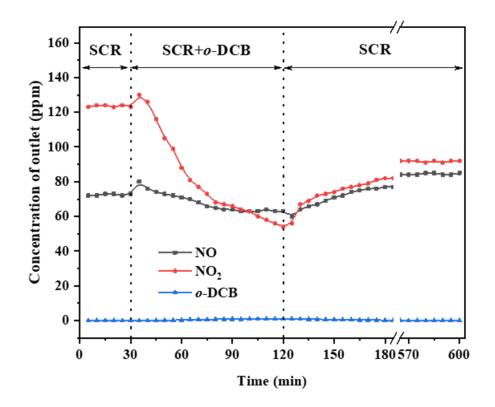


Fig. S4. Transient reaction on $Sn_{0.08}Mn_{0.25}Ox/LDO$ catalyst at 300 °C for the effect of *o*-DCB on the SCR reaction.

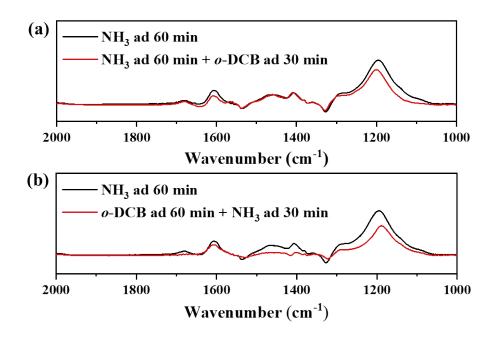
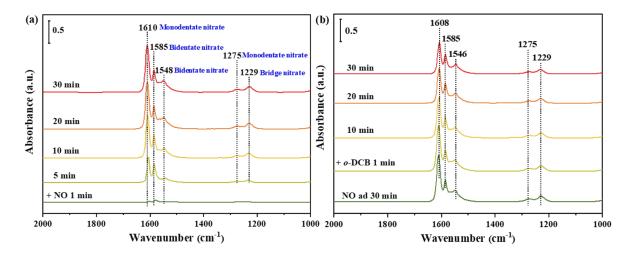



Fig. S5. In situ DRIFTs spectra of (a) NH₃ adsorption at 60 min and pre-adsorbed NH₃
+ *o*-DCB adsorption at 30 min, (b) NH₃ adsorption at 60 min and pre-adsorbed *o*-DCB
+ NH₃ adsorption at 30 min.

Fig. S6. In situ DRIFTs spectra of $Sn_{0.08}Mn_{0.25}Ox/LDO$ catalyst exposed to (a) NO and (b) followed by exposure to *o*-DCB for various time at 150 °C.

2.Supplementary Tables

Catalysts	Amount of O ₂ desorption (mmol/g)	H ₂ consumption (mmol/g)	Amount of NH ₃ desorption (mmol/g)	The ratios of B/L ^a	
				200 °C	350 °C
Fresh-Mn _{0.25} Ox/LDO	0.34	0.72	0.79	0.08	0.10
Used-Mn _{0.25} Ox/LDO	/	0.78	1.89	/	
Fresh-Sn _{0.08} Mn _{0.25} Ox/LDO	0.36	0.72	1.29	0.17	0.29
Used-Sn _{0.08} Mn _{0.25} Ox/LDO	/	0.73	1.43		/
CoFe-LDO	0.45	0.88	0.85	,	/

Table S1. Quantitative results of the O₂-TPD, H₂-TPR, NH₃-TPD and Py-FTIR.

^a Calculated from Py-FTIR data.

Reference

 H. Lu, M. Sui, B. Yuan, J. Wang and Y. Lv, *Chemical Engineering Journal*, 2019, 357, 140-149.

2. X. Wu, C. Ci, Y. Du, X. Liu, X. Li and X. Xie, *Materials Chemistry and Physics*, 2018, **211**, 72-78.

3. Q. Yan, Y. Nie, R. Yang, Y. Cui, D. O'Hare and Q. Wang, *Applied Catalysis A: General*, 2017, **538**, 37-50.

4. J. Wang, Z. Lei, H. Qin, L. Zhang and F. Li, *Industrial & Engineering Chemistry Research*, 2011, **50**, 7120-7128.