ESI (Electronic Supplementary Information)

Title:

Elucidation of catalytic NOx reduction mechanism in an electric field at low temperatures

Authors

Ayaka Shigemoto^a, Takuma Higo^a, Yuki Narita^a, Seiji Yamazoe^b, Toru Uenishi^c and Yasushi Sekine^{*a}

a Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan, E-mail ysekine@waseda.jp

b Department of Chemistry, Tokyo Metropolitan University, 1-1, Minamiosawa, Hachioji, Tokyo, 192-

0397, Japan

c Toyota Motors, 1200, Mishuku, Susono, Shizuoka 410-1193, Japan

Figure S1. A schematic image of the activity test reactor.

Figure S2. XRD spectra for the prepared catalysts.

Figure S3. In situ Pd K-edge XANES spectra of $Ce_{0.7}Zr_{0.3}O_2$ under NO-CO- $C_3H_6-O_2$ reaction (NO: 2500 ppm, CO: 3000 ppm, C_3H_6 : 500 ppm, O_2 2500 ppm, Ar balance, total flow: 200 cc min⁻¹) with/without the electric field (3 mA) at 373 K.

We conducted *in-situ* XAFS measurement in a reaction gas atmosphere (NO-CO-C₃H₆-O₂) at 373 K after H₂ reduction to evaluate the electronic state of Pd supported by $Ce_{0.7}Zr_{0.3}O_2$. Fig. S3 depicts spectra for the Pd K-edge of Pd/Ce_{0.7}Zr_{0.3}O₂ with and without the electric field. As Fig. S3 shows, Pd loaded on $Ce_{0.7}Zr_{0.3}O_2$ was in the metallic state with or without the application of the electric field.

No change in the electronic state of Pd attributable to application of the electric field was observed.

A) With/without the electric field

B) With the electric field \rightarrow Without the electric field

Figure S4. Protocol for in-situ DRIFTS measurement (A) with/without the electric field (3 mA) at

each temperature (with: 373 K, without: 448 K) (B) with the electric field (3 mA) when dosing C₃H₆

at 373 K \rightarrow without the electric field when dosing NO at 448 K

from C_3H_6 to NO flow) without the electric field at 448 K.

v(C=O) acetate v(C-C) Pdº-CO 1200 s 0.05 1080 s Absorbance / -900 s 720 s 600 s 300 s 180 s 120 s 60 s 20 s mm 2200 2000 1800 1600 1400 1200 1000 Wavenumber / cm⁻¹

without the electric field at 448 K.

Figure S7. 2D graph for the DRIFT spectra of $Pd/Ce_{0.7}Zr_{0.3}O_2$ during the transient test (switching

from C_3H_6 to NO flow) with the electric field (3 mA) at 373 K.

Figure S8. DRIFT spectra of Pd/Ce_{0.7}Zr_{0.3}O₂ during the transient test (switching from C_3H_6 to NO

flow) without the electric field at 373 K.

Figure S9. DRIFT spectra of Pd/Ce_{0.7}Zr_{0.3}O₂ during transient test (switching from C₃H₆ to NO flow) with the electric field (3 mA) when dosing C₃H₆ at 373 K \rightarrow without the electric field when dosing NO at 448 K.

Figure S10. DRIFT spectra of Pd/Ce $_{0.7}$ Zr $_{0.3}$ O $_2$ during transient test (switching from NO to C $_3$ H $_6$ flow)

with the electric field at 373 K.

Figure S11. NO and C_3H_6 conversion over $Ce_{0.7}Zr_{0.3}O_2$ under NO– C_3H_6 reaction (NO: 2700 ppm,

 C_3H_6 : 300 ppm, Ar balance, SV: 108 800 h⁻¹) applying 3.0 mA direct current.

Table ST BET specific surface area	
	Surface area /m ² g ⁻¹
Pd/Ce _{0.7} Zr _{0.3} O ₂	14
$Ce_{0.7}Zr_{0.3}O_2$	16

Table S1 BET specific surface area