Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

for

Chemoenzymatic Deracemization of Lisofylline Catalyzed by (Laccase/TEMPO)-Alcohol Dehydrogenase System

Paweł Borowiecki,^{a,*} Aleksandra Rudzka,^a

Tamara Reiter^b and Wolfgang Kroutil^b

^a Department of Drugs Technology and Biotechnology, Laboratory of Biocatalysis and Biotransformation, Warsaw University of Technology, Faculty of Chemistry, Koszykowa St. 75, 00-662 Warsaw, Poland.

^b Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria

*Corresponding author. Dr. Paweł Borowiecki (Email: <u>pawel.borowiecki@pw.edu.pl</u>; Website: <u>http://lbb-wut-borowiecki.ch.pw.edu.pl/</u>)

Table of contents

1. Table S1 . Effect of metal ions on laccase/TEMPO-catalyzed oxidation of lisofylline (<i>rac-</i> 1)
2. Table S2 . Analytical separation conditions of racemic compounds by GC column
3. Table S3. HPLC analytical separation conditions of racemic lisofylline (rac-1) by Chiralpak AD-H
(Daicel [®]) column
4. Analytical data (copies of HPLC chromatograms)
5. Spectral data (copies of NMR, FTIR and FTMS spectra)

Fable S1. Effect of metal ions on laccase/TEMPO-catalyzed oxidation of lisofylling	(<i>rac</i> - 1).
---	-------------------------	----

Entry	Metal ion ^a	Inorganic salt	Conv. ^b (%)
1	-	-	17
2	_c	-	16
3	Mg^{2+}	$MgSO_4$	17
4	Fe ²⁺	$FeCl_2 \times 4H_2O$	17
5	Fe ²⁺	$FeSO_4 \times 7H_2O$	15
6	Co^{2+}	$CoCl_2 \times 6H_2O$	13
7	Zn^{2+}	$ZnSO_4 \times 7H_2O$	15
8	Cu^{2+}	$CuSO_4 \times 5H_2O$	17

^{*a*} Reaction conditions: *rac*-1 (23 mg, 0.08 mmol, 50 mM final conc.), *T. versicolor* laccase (L*Tv*, 7 mg, 4.6 U), TEMPO (4.1 mg, 33% mol), inorganic salt (1 mM final conc.), oxygenated citrate buffer (50 mM, pH 5.0), acetone (20% v/v), 24 h, 30 °C, stirring in an open-to-air test vial (150 rpm, magnetic stirrer). ^{*b*} Conversion values (%) (i.e., consumption of substrate *rac*-1) were determined by GC analyses after derivatization of crude mixture with *N*,*O*-bis(trimethylsilyl)acetamide (BSA) as a silylating reagent. ^{*c*} With additional O₂ bubbling.

Description:

The reaction mixtures performed in citrate buffer (50 mM, pH 5.0), acetone (20% v/v) for 24 h at 30 °C were supplemented with 1 mM final conc. of MgSO₄, FeCl₂×4H₂O, FeSO₄×7H₂O, CoCl₂×6H₂O, ZnSO₄×7H₂O, and CuSO₄×5H₂O as a source of each of the listed metal ions. The control reactions were assayed without added metal ions and in two variants with aerial oxygen as well as under O₂-atmosphere incorporated through an O₂-filled balloon (**Table S1**, entries 1 and 2). The results indicated that there was no positive influence of metal ions on the activity of L*Tv*/TEMPO system in tested reactions.

The addition of Mg^{2+} , Fe^{2+} , Fe^{2+} , Zn^{2+} , and Cu^{2+} was found to enhance the laccase-mediated oxidation almost at the same level (15–17% conv.) in the majority of cases. On the contrary, a negligible decrease in the conversion of *rac*-1 (13% conv.) was observed for the reactions incubated with $CoCl_2 \times 6H_2O$. This deterioration of activity is in line with other reports that have demonstrated that Co^{2+} ions slightly reduce the laccase activity due to the unfolding of the enzyme. [please see: (a) S. Afreen, T. N. Shamsi, M. A. Baig, N. Ahmad, S. Fatima, M. I. Qureshi, M. I. Hassan, T. Fatma, *PLoS One*, 2017, **12**, e0175144; (b) M. M. Atalla, H. K. Zeinab, R. H. Eman, A. Y. Amani, A. Abeer, *Saudi J. Biol. Sci.*, 2013, **20**, 373–381.]

Compound	Temperature program [°C]	Retention time [min]
OH N N N N N N N N N N N N N N N N N N N	260 (isothermal)	9.47
		9.75
		7.28

Table S2. Analytical separation conditions of compounds by GC column.

 Table S3. HPLC analytical separation conditions of racemic lisofylline (rac-1) by

 Chiralpak AD-H (Daicel[®]) column.

Compound	HPLC Column	Mobile Phase	Flow Rate [mL/min]	Detection [nm] (Temperature [°C])	Retention Time [min]
		<i>n</i> -Hexane/IPA/DEA [v/v/v]			
OH N N N N N N N rac-1	Chiralpak AD-H	78:22 ^[a]	1.0	273 (25)	30.763 (<i>R</i>) and 33.806 (<i>S</i>)
		78:22:0.1 ^[a]	1.0	273 (25)	29.874 (<i>R</i>) and 32.738 (<i>S</i>)
		78:22 ^[b]	1.0	273 (25)	26.056 (<i>R</i>) and 28.875 (<i>S</i>)

^[a] Performed on a Shimadzu Nexera-*i* (LC-2040C 3D) equipped with a photodiode array detector (PAD).

^[b] Performed on a Shimadzu CTO-10ASV chromatograph equipped with STD-20A UV detector.

HPLC analytical separation for both enantiomers of *rac*-1 on Chiralpak AD-H at 25 °C [Performed on a Shimadzu Nexera-*i* (LC-2040C 3D) equipped with a photodiode array detector (PAD)] HPLC conditions: *n*-hexane-2-PrOH-DEA (78:22:0.1, v/v); f=1.0 mL/min; λ =273 nm;

The HPLC analysis of whole microbial cells and ADHs-catalyzed stereoselective reductions of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1*H*-purine-2,6-dione (2) – *Screening of the whole-cell biocatalysts*

HPLC analytical separation for both enantiomers of *rac*-1 on Chiralpak AD-H at 25 °C (Performed on a Shimadzu CTO-10ASV chromatograph equipped with STD-20A UV detector)

The HPLC analysis of ADHs-catalyzed stereoselective reductions of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1*H*-purine-2,6-dione (2) – *Up-scaling*

¹H NMR spectrum of **2** (500 MHz, CDCl₃)

¹³C NMR spectrum of **2** (126 MHz, CDCl₃)

FTMS spectrum of 2 (ESI-TOF)

IR spectrum of 2 (Mineral oil, Nujol)

 $3, 7-Dimethyl-1-\{5-[(trimethylsilyl) oxy] hexyl\}-2, 3, 6, 7-tetrahydro-1H-purine-2, 6-dione \quad (rac-interval) and a start of the start$

3)

¹H NMR spectrum of *rac*-**3** (500 MHz, CDCl₃)

¹³C NMR spectrum of *rac*-**3** (126 MHz, CDCl₃)

FTMS spectrum of *rac-3* (ESI-TOF)

IR spectrum of *rac-***3** (Mineral oil, Nujol)

