Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Effect of Cobalt Doping on Photocatalytic Water Splitting Activity of NiTi-Layered Double Hydroxide

Sara Samuei^a, Sina Sadigh Akbari^a, Emine Ülker^b, Ferdi Karadas^{*a,c}

- a. Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Turkey. E-mail: karadas@fen.bilkent.edu.tr .
- b. Department of Chemistry, Faculty of Arts & Science, Recep Tayyip Erdogan University, Rize, Turkey.
- c.UNAM National Nanotechnology Research Center, Institute of Materials Science

and Nanotechnology, Bilkent University, Ankara 06800, Turkey.

Fig. S1 TEM micrographs of (a) CoNiTi-LDH and (b) NiTi-LDH samples after treatment in butanol.

Fig. S2 FT-IR spectra of (a) CoNiTi-LDH and (b) NiTi-LDH samples.

Fig. S3. SEM micrographs of (a) CoNiTi-LDH and (b) NiTi-LDH samples.

Fig. S4 SEM-EDS analysis and the atomic ratio of CoNiTi-LDH and NiTi-LDH samples.

Fig. S5 TGA and DTA patterns of (a) CoNiTi-LDH and (b) NiTi-LDH samples.

Fig. S7 XRD patterns of post-catalyst CoNiTi-LDH and NiTi-LDH after four cycles.

Fig. S8 FT-IR spectra of post catalyst (a) CoNiTi-LDH, (b) NiTi-LDH.

Fig. S9 Cyclic voltammogram curves of CoNiTi-LDH and NiTi-LDH samples.

Table.S1 The reported O_2 and H_2 evolution rate of some LDH Catalyst compared with this study.

Photocatalyst	Synthesis	Amount	Incident	Solution/	O ₂ evolved	H ₂	Reference
	method	of	light	Sacrificial agent	µmol∙	evolved	
		catalyst			g ⁻¹ h ⁻¹	µmol∙	
						g ⁻¹ h ⁻¹	
TiO ₂	Hydrothermal	200	>400 nm	H ₂ O/AgNO ₃	<10	-	48,49
ZnTi-LDH	Co- precipitation	45	>400 nm	H ₂ O/AgNO ₃	268.3	-	54
NiTi-LDH	Co- precipitation	200	700-400 nm	H ₂ O/AgNO ₃	50	-	55

CuTi-LDH	Co- precipitation	200	700-400 nm	H ₂ O/AgNO ₃	30	-	55
ZnCr- LDH/TiO ₂	Layer by layer	10	>420 nm	H ₂ O/AgNO ₃	1180	-	55
NiTi-LDH	Reverse micro emulsion	50	>400 nm	H ₂ O/AgNO ₃	2148	-	30
NiTi-LDH	Co- precipitation	50	>400 nm	H ₂ O/AgNO ₃	267	-	30
g-C₃N₄/NiFe LDH	Weight impregnation	30	>420 nm	H ₂ O/Methanol	-	1488 (2 h ⁻¹)	53
FeMgAl- LDH	Co- precipitation	20	>420 nm	CH₃OH/None	-	493	52
CdS/ZnCr- LDH	Exfoliation- restacking	100	>420 nm	None/Na ₂ SO ₃ +Na ₂ S		374	51
Au/ZnAl- LDH	Memory effect	100	whole range	H ₂ O/Methanol	-	132	50
NiTi-LDH	Co- precipitation	10	>420 nm	H ₂ O/AgNO ₃ H2O/Methanol	161	2	This work
CoNiTi-LDH	Co- precipitation	10	>420 nm	H ₂ O/AgNO ₃ H2O/Methanol	366	3.4	This work

30 Y. Zhao, P. Chen, B. Zhang, J Dang, S. Su, S. Zhang, L. Tian, J. Lu, Z. Li, X. Cao, B. Wang, M. Wei, D. G. Evans and X. Duan, weimin.buct.edu.cn, , DOI:10.1002/chem.201201065.

- 48 J. Tao, Q. Cuan, X. Q. Gong and M. Batzill, J. Phys. Chem. C, 2012, 116, 20438–20446.
- 49 A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro and V. Dal Santo, *J. Am. Chem. Soc.*, 2012, **134**, 7600–7603.
- 50 F. Sastre, M. Oteri, A. Corma and H. García, *Energy Environ. Sci.*, 2013, **6**, 2211–2215.
- 51 G. Zhang, B. Lin, W. Yang, S. Jiang, Q. Yao, Y. Chen and B. Gao, *RSC Adv.*, 2014, **5**, 5823–5829.
- 52 K. Parida, M. Satpathy and L. Mohapatra, J. Mater. Chem., 2012, 22, 7350–7357.

- 53 S. Nayak, L. Mohapatra and K. Parida, *J. Mater. Chem. A*, 2015, **3**, 18622–18635.
- 54 K. Qi, S. Y. Liu and M. Qiu, *Chinese J. Catal.*, 2018, **39**, 867–875.
- 55 F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt and P. Feng, J. Am. Chem. Soc., 2010, **132**, 11856–11857.