Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting information

Synthesis of nanosheet epitaxial growth ZSM-5 zeolite with increased

diffusivity and its catalytic cracking performance

Jing Hao^a, Shuman Xu^a, Dang-guo Cheng^{*ab}, Fengqiu Chen^{ab}, and Xiaoli Zhan^{ab} ^aCollege of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China. ^bInstitute of Zhejiang University-Quzhou, Quzhou 324000, China.

* Corresponding author. Tel.: +86 571 87953382; Fax: +86 571 87951227. E-mail: dgcheng@zju.edu.cn.

Sample	S _{BET} (m ^{2.} g ⁻¹)	S _{Ext} (m ^{2.} g ⁻¹)	V _{Tol} (cm ^{3.} g ⁻¹)	V _{Micro} (cm ^{3.} g ⁻¹)	V _{Meso} /V _{Micro}	
RP-120	387	147	0.444	0.123	2.61	
S-120	355	106	0.439	0.129	2.40	
RP-150	396	147	0.417	0.127	2.28	
RP-200	400	168	0.433	0.112	2.87	
RP-250	389	152	0.332	0.122	1.72	
RP-300	349	128	0.362	0.112	2.23	
N2-50	506	313	0.758	0.100	6.58	
S-50	465	281	0.716	0.095	6.54	
N2-120	319	119	0.462	0.103	3.48	

Table S1. Textural properties of RP zeolite and N2 zeolite with different Si/Al ratio

		Acid	ity by		Acidity by					
Sample	Si/Alª	NH₃-TPD (mmol·g ⁻¹)		Total acid Amount (mmol·g ⁻¹)	Total acid Density ^b (mmol·m⁻²)	Py-IR (μmol∙g⁻¹)				B acid Density ^c (μmol·m ⁻²)
		Weak	Strong		-	В	L	150 °C-B/L	250 °C-B/L	-
RP-120	129	0.080	0.111	0.19	0.49	63.4	40.3	1.6	5.5	0.16
RP-150	160	0.064	0.066	0.13	0.33	49.9	30.1	1.7	5.5	0.13
RP-200	204	0.056	0.069	0.13	0.31	32.9	67.2	0.5	na*	0.08
RP-250	225	0.048	0.051	0.10	0.25	23.4	56.8	0.4	na	0.06
RP-300	252	0.034	0.044	0.08	0.22	24.3	46.3	0.5	na	0.07
N2-50	50	0.177	0.263	0.44	0.87	69.9	24.2	2.9	2.9	0.14
N2-120	125	0.060	0.089	0.15	0.47	49.9	22.0	2.3	3.2	0.16

 Table S2. Acidity properties of RP and N2 zeolites with different Si/Al ratio

^a Actual Si/Al ratio determined by inductively coupled plasma (ICP).

^b The ratio of the total amount of acid to the specific surface area.

^c The ratio of B acid amount to the specific surface area. The test temperature of Py-IR at 150 °C is used to calculate

the B acid density.

*not available.

Fig. S1 XRD patterns of calcinated RP zeolite with different Si/Al ratio.

Fig. S2 SEM and TEM images of RP-150 (a, b), RP-200 (c, d), RP-250 (e, f), RP-300 (g, h).

Fig. S3 RP zeolite synthesized with Si/Al ratio of 120 and water content of 4000. The synthesized material shows some

bulk-shaped zeolite and phase separation.

Fig. S4 RP zeolite synthesized with Si/Al ratio of 50 and water molar ratio of 800. The appearance of layered epitaxial growth is not shown when Si/Al=50.

Fig. S5 SEM and TEM images of N2-50 (a, b) and N2-120 (c, d).

Fig. S6 The low-angle and high-angle XRD patterns of N2-50 with different synthesis time.

Fig. S7 (a) N₂ physisorption isotherms of RP-120 with different hydrothermal time. The curves have appropriate offsets for intuitiveness. After 24 h of hydrothermal treatment, the high-pressure hysteresis loop has changed from H4 to H3 type, indicating the formation of slit-shaped mesopores. (b) BJH pore size distribution of RP-120 with

different hydrothermal treatment time.

Fig. S8 (a) NH_3 -TPD curves of RP and N2 zeolites, confirming the presence of weak and strong acids; (b) FTIR spectra of adsorbed pyridine.

Fig. S9 (a) The conversion of n-heptane and the selectivity of ethylene and propylene of RP zeolite; (b) The conversion and total yield of ethylene and propylene as a function of B acid amount.

Fig. S10 n-Heptane conversion rate per Al site of the three zeolites. The reaction is measured at 100 h⁻¹ WHSV, and the conversion rate of n-heptane is within 10%.

Fig. S11 The stability evaluation of N2-120 zeolite.

Fig. S12 N_2 physisorption isotherms and pore size distributions for N2-50 and S-50 zeolites.