Higher Loadings of Pt Single-Atom and Clusters over Reducible Metal Oxides: Application to C-O Bond Activation

Yunzhu Wang,¹ Seungyeon Lee,^{1,2} Jiahua Zhou,^{1,2} Jiayi Fu,^{1,2} Alexandre Foucher,³ Eric Stach,³ Lu Ma,⁴ Nebojsa Marinkovic,⁴ Steven Ehrlich,⁴ Weiqing Zheng,^{1*} Dionisios G. Vlachos^{1,2*}

- 1. Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
 - Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- 4. National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA

*Corresponding authors: Weiqing Zheng weiqing@udel.edu; Dionisios G. Vlachos vlachos@udel.edu

Sample	Pt (wt %)	TiO ₂ (wt %)	I (wt %)
1Pt _{NP}	1.24	98.76	-
$1Pt_1$	1.18	97.86	0.95
1Pt ₁ -H ₂	1.13	98.50	0.36
1Pt ₁ -Ar	1.18	98.18	0.64

Table S1. XRF results of Pt/TiO₂ catalysts.

Table S2. ICP-OES results of Pt/TiO₂ catalysts.

Sample	Theoretical Pt Loading (%)	Actual Pt Loading (%)	
1Pt _{NP}	1	0.95	
$1Pt_1$	1	0.89	
2Pt _{NP}	2	1.53	
$2Pt_1$	2	1.55	

Table S3. The Pt/Ti atomic ratio, Ti^{3+} and Ti^{4+} percentage in 1 wt% and 2 wt% samples, obtained from XPS data.

Samples	Pt/Ti (atomic ratio)	Ti (III)	Ti (IV)
1Pt _{NP}	0.010588	3.72%	96.27%
$1Pt_1$	0.020079	2.53%	97.47%
2Pt _{NP}	0.016158	4.15%	95.85%
2Pt ₁	0.056355	2.07%	97.93%

Table S4. Calculated CO binding energy on Pt_1 -(I)_m-CO (m=1-4). A positive convention is used for favorable binding. ($E_{bind,CO} = E_{system} + E_{CO(gas)} - E_{system+CO}$)

Number of I• introduced	E _{bind,CO} (per CO)	
on Pt ₁ -CO	(eV)	
1	2.19	
2	3.06	
3	2.88	
4	1.80	

Table S5. Calculated CO vibrational frequencies and Bader charge value of Pt for the configurations shown in Figure 3.

n	Pt _n		Pt _n -(I) ₂	
	$v (\text{cm}^{-1})$	bader Pt	$v (cm^{-1})$	bader Pt
1	2084	0.12	2110	0.34
2	2055	-0.13	2079	0.11
3	2039	0.06	2085	0.14
4	2025	0.03	2099	0.40

Figure S1. AC-HAADF-STEM images of (a) $2Pt_{NP}$, (b) $2Pt_1$, and (c) FTIR spectra of CO adsorption of $2Pt_{NP}$ and $2Pt_1$.

Figure S2. XRD patterns of Pt/TiO₂ catalysts before and after redispersion.

Figure S3. The Pt L_{III} -edge XAS and Pt 4*f* XPS data of the 2 wt% Pt/TiO₂ catalysts. (a) Normalized XANES spectra and (b) the Pt 4*f* XPS spectra.

Figure S4. The Ti 2p XPS spectra of 1 wt% and 2 wt% Pt/TiO₂ catalysts.

Figure S5. Catalyst thermal stability. (a) MS spectra of $1Pt_1$ sample upon thermal treatment under inert gas at 250 °C. Reaction conditions: 100 mg catalyst, 50 ml/min He. (b) FTIR spectra of CO adsorption of $1Pt_1-H_2$ and $1Pt_1-Ar$.

Figure S6. Measurement of the initial activities of $1Pt_1$ and $1Pt_{NP}$. The *p*-Xylene production was calculated by mole of *p*-Xylene produced over mol of surface Pt. Reaction conditions: 0.088 M 4MBA, 20 mL isopropanol (IPA), 100 mg catalyst, 100 psi H₂ and 160 psi N₂ at room temperature, 180 °C.

Figure S7. (a) Catalytic performance of spent and regenerated $1Pt_1$ catalysts for HDO of 4MBA. Reaction conditions: 0.088 M 4MBA, 20 ml iso-propanol (IPA), 100 mg catalyst, 100 psi H₂ and 160 psi N₂ at room temperature, 180 °C, 2 h. (b) FTIR spectra of CO adsorption of $1Pt_1$ -spent and $1Pt_1$ -spent-R.