Electronic Supplementary Information

Intermetallic YIr₂ Nanoparticles with Negatively Charged Ir Active Sites for Catalytic Hydrogenation of Cyclohexanone to Cyclohexanol

Yasukazu Kobayashi,^{*a} Shohei Tada^b, Masaru Kondo^b, Kakeru Fujiwara^c and Hiroshi Mizoguchi^d

^{a.} Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

E-mail: <u>yasu-kobayashi@aist.go.jp</u>.

- ^{b.} Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawacho, Hitachi, Ibaraki 316-8511, Japan.
- ^{c.} Department of Chemistry and Chemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawashi, Yamagata 992-8510, Japan.
- ^{d.} International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.

Journal Name

Fig. S1 XRD patterns of YIr₂(Pre) and YRh(Pre).

Fig. S2 SEM images of YIr₂(RDT).

Fig. S3 (a) SEM image and (b) the corresponding EDX spectrum at different positions of #1-#4 for $YIr_2(RDT)$.

Fig. S4 SEM-EDX of YIr₂(RDT) at different positions of #5-#22.

Fig. S5 SEM-EDX of YIr₂(RDT) at a position of #23.

Fig. S6 TEM images of YIr₂(RDT).

Fig. S7 TEM-EDX of YIr₂(RDT) at different positions of #1-#30.

8 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Fig. S8 Particle size distribution on TEM images for YIr₂(RDT).

Fig. S9 SEM images of YRh(RDT).

Fig. S10 (a) SEM images and (b) the EDX spectra at a position of #12 for YRh(RDT).

Journal Name

Fig. S11 SEM-EDX of YRh(RDT) at different 3 positions.

Fig. S12 TEM images of YRh(RDT).

Fig. S13 TEM-EDX of YRh(RDT) at different positions of #1-#37.

14 | J. Name., 2012, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Fig. S14 TEM-EDX of YRh(RDT).

Fig. S15 Particle size distribution on TEM images for YRh(RDT).

		M	olar ratio [mo	Average ratio	
Measurement	Position #	Y	Ir	0	[mol/mol]
	1	10.9	37.8	51.3	
	2	13.8	35.7	50.5	
	3	14.9	40.7	44.4	
	4	11.8	43.4	44.8	•
	5	33.0	40.4	23.7	
	6	31.9	34.7	30.6	
	7	31.9	38.5	26.6	
	8	36.1	41.1	21.3	
	9	31.8	36.0	28.4	
	10	13.1	27.4	53.8	
	11	25.1	35.1	35.9	
SEM-EDX	12	25.3	34.6	35.2	Ir/Y = 1.7/1
	13	25.6	38.4	32.2	
	14	24.6	32.5	30.8	
	15	33.0	33.0	30.4	
	16	23.7	42.1	30.4	
	17	24.6	36.8	35.8	
	18	42.5	40.2	14.9	
	19	21.1	30.3	43.9	
	20	31.9	42.1	21.3	
	21	24.5	35.6	34.9	
	22	17.7	34.1	44.7	
	1	21.7	61.9	5.5	
	2	25.5	66.4	2.9	•
	3	19.1	72.6	2.4	
	4	19.7	71.1	2.2	
	5	26.2	64.0	3.4	
	6	12.2	75.5	3.4	
	7	15.4	46.1	21.1	
	8	17.0	44.4	23.0	
	9	15.7	52.6	12.3	
TEM-EDX	10	18.6	51.1	15.4	
	11	22.6	59.5	5.3	lr/Y = 3.2/1
	12	6.2	28.7	45.7	
	13	20.2	56.2	8.8	
	14	20.3	53.9	10.5	
	15	16.1	56.5	9.5	
	16	19.5	46.0	14.4	
	17	13.4	47.7	19.5	
	18	14.8	50.9	17.1	
	19	19.4	62.0	5.8	
	20	19.6	59.1	5.6	
	21	22.4	64.1	5.4	

Table S1 Summary of the molar ratios measured by SEM-/TEM-EDX for YIr₂(RDT).

This journal is © The Royal Society of Chemistry 20xx

Journal Name

22	26.7	65.4	1.9
23	14.2	53.5	15.5
24	18.0	54.4	11.4
25	16.1	53.6	11.2
26	17.2	48.7	16.0
27	20.7	48.2	17.8
28	15.7	47.2	23.7
29	17.5	50.1	19.1

N A	Position #		Molar ratio [mol%]			Average ratio
Measurement			Y	Rh	0	[mol/mol]
	Rh-rich	1	17.7	12.4	69.9	
		2	9.0	6.8	84.1	
		3	14.7	11.6	73.7	
SEM-EDX		4	19.6	13.3	67.1	
		5	8.7	9.3	82.0	Rh/Y = 0.9/1
		6	10.7	6.1	83.1	
		7	7.5	16.4	76.1	
		8	10.0	9.5	80.5	
		9	9.5	3.5	87.0	
		10	12.9	1.0	86.1	
	Y-rich	11	3.8	0.6	95.6	Rh/Y = 0.3/1
		12	14.5	7.3	78.2	
		13	12.8	1.7	85.5	
		1	46.7	36.7	16.6	
		2	51.9	38.1	9.9	
		3	47.8	37.4	14.8	
		4	49.2	22.2	28.6	
		5	46.1	23.8	30.1	
		6	54.5	31.4	14.1	
	Rh-rich	7	44.8	28.2	27.1	Rh/Y = 0.9/1
		8	50.7	42.2	7.1	
		9	28.9	48.3	22.8	
		10	56.4	30.8	12.8	
		11	44.5	22.5	33.0	
		12	24.3	45.3	30.4	
		13	27.2	56.3	16.5	
	Y-rich	14	36.9	0.1	62.9	
		15	40.1	0.2	59.8	
TEM-EDX		16	37.4	0.0	62.6	
		17	40.7	0.3	59.0	
		18	37.7	0.1	62.2	
		19	34.3	0.0	65.7	
		20	30.2	0.0	69.8	
		21	71.1	2.4	26.6	
		22	35.3	0.1	64.6	Rh/Y = 0.005/1
		23	36.8	0.5	62.7	
		24	38.1	0.2	61.6	
		25	35.0	0.2	64.8	
		26	31.5	0.2	68.4	
		27	19.8	0.1	80.1	
		28	31.3	0.1	68.7	
		29	37.6	0.2	62.2	
		30	60.6	0.0	39.4	

Table S2 Summary of the molar ratios measured by SEM-/TEM-EDX for YRh(RDT).

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 19

Journal Name

31	51.3	0.0	48.7	
32	35.5	0.0	64.5	
33	32.9	0.4	66.7	
34	10.3	0.0	89.7	
35	38.1	0.1	61.8	
36	42.7	0.1	57.2	
37	43.8	0.4	55.8	

Fig. S16 XPS spectra of $YIr_2(Pre)$ and $YIr_2(RDT)$ for C 1s, Y 3d and Ir 4f. The spectra were calibrated with peaks of C 1s at 285 eV.

Fig. S17 (a) XRD patterns of spent $YIr_2(RDT)$ and (b) reference peaks for YIr_2 . The measurement and analysis were conducted by using a XRD apparatus of SmartLab (Rigaku Corporation) with CuK α radiation at 40 kV and 45 mA

Catalyst	Substrate	Reductant	Temperature [°C]	Time [h]	Yield of alcohol [%]	ref.
3wt%Pt/C	cyclohexanone	H ₂ (0.1 MPa)	room temperature	16	27	
YIr ₂ (RDT)	cyclohexanone	H ₂ (0.1 MPa)	room temperature	16	10	
Pre-reduced	avalahayanana		room tomporaturo	16	4	This
YIr ₂ (RDT)	cyclonexanone	П ₂ (0.1 МРА)	room temperature	10	4	work
1wt%lr/Y ₂ O ₃	cyclohexanone	H ₂ (0.1 MPa)	room temperature	16	<0.05	
1wt%lr/SiO ₂	cyclohexanone	H ₂ (0.1 MPa)	room temperature	16	0	
YRh(RDT)	cyclohexanone	H ₂ (0.1 MPa)	room temperature	16	0	
lr/C	4-methyl benzaldehyde	H ₂ balloon (0.1 MPa)	100	10	3	
Ir@CN	4-methyl benzaldehyde	H ₂ balloon (0.1 MPa)	100	10	4	[1]
Pd/C	4-methyl benzaldehyde	H ₂ balloon (0.1 MPa)	100	10	40	

Table S3 Comparison of catalytic performance in C=O bond hydrogenation to alcohols.

Reference

[1] Zhi Wang, Lei Huang, Longfei Geng, Rizhi Chen, Weihong Xing, Yong Wang and Jun Huang, *Catal. Lett.* 2015, **145**, 1008.