Supporting Information for

Selective oxidation of methane to methanol and methyl hydroperoxide over
palladium modified MoO ₃ photocatalyst under ambient conditions
Songmei Sun, ^{a,b,c*} Nicholas F. Dummer, ^{a*} Takudzwa Bere, ^a Alexandra J. Barnes, ^a
Greg Shaw, ^a Mark Douthwaite, ^a Samuel Pattisson, ^a Richard Lewis, ^a Nia Richards, ^a
David J. Morgan, ^a Graham J. Hutchings ^a *
^a Max Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main
Building, Park Place, Cardiff, CF10 3AT, UK
^b Donghua University, College of Environmental Science and Engineering, Shanghai
201620, P.R. China
^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092,
P.R. China
* Correspondence: <u>sunsm@dhu.edu.cn</u> , <u>dummernf@cardiff.ac.uk</u> ,

hutch@cardiff.ac.uk

Figure S1 (a) Low magnified TEM image of MoO₃ sample, (b) Low magnified TEM image of 0.92 wt.% Pd/MoO₃ sample, (c) Low magnified TEM image of 1.86 wt.% Pd/MoO₃ sample, (d) High magnified STEM image of 1.86 wt.% Pd/MoO₃ sample, (e) Low magnified TEM image of 3.75 wt.% Pd/MoO₃ sample, (f) High magnified TEM image of 3.75 wt.% Pd/MoO₃ sample.

Figure S2 (a) O 1s XPS spectrum of 1.86 wt.% Pd/MoO₃ sample. (b) Mo 3d XPS spectrum of 1.86 wt.% Pd/MoO₃ sample. The peak at 530.8 eV in Figure S2a is ascribed to the lattice oxygen, while the other peak located at 532.1 eV is attributed to OH groups on the surface and possibly some signal from the support tape.

Figure S3 Photocatalytic methane conversion and H₂O₂ production performance as a function of irradiation time. (a) Methane oxidation product yields over the pure MoO₃ sample. (b) H₂O₂ yield over pure MoO₃, 0.92 wt.% Pd/MoO₃ and 3.75 wt.% Pd/MoO₃. (c) Methane oxidation products yields over 0.92 wt.% Pd/MoO₃. (d) Methane oxidation product yields over 3.75 wt.% Pd/MoO₃

Figure S4 Three catalytic reuse cycles of CH_4 oxidation over 1.86 wt.% Pd/MoO₃ under simulated solar light irradiation illustrating the product concentration as a function of total reaction time

Figure S5 Powder XRD pattern of $1.86 \text{ wt.}\% \text{ Pd/MoO}_3$ sample after 72 h irradiation for methane oxidation reaction.

Figure S6 Background DRIFT spectrum of the pure MoO₃ (a) and 1.86 wt.% Pd/MoO₃ (b) samples.

Figure S7 Anodic current-potential scans and corresponding Tafel plots of the asprepared MoO₃ and 1.86 wt.% Pd/MoO₃ samples in 0.1 M Na₂SO₄ under 300 W chopped Xe arc lamp irradiation.