Supplementary Information

Section 1. Performance comparison of spinel and ceria-zirconia as oxygen storage material

The use of the $Mn_{0.5}Fe_{2.5}O_4$ (MFO) spinel and the more commonly used ceria-zirconia (CZO) as the oxygen storage material (OSM) in the PGM monolith catalysts is compared with the same OSM loading. The composition $Ce_{0.3}Zr_{0.7}O_2$ was chosen as to represent CZO in this study. The CH₄ conversion profiles under the modulated and time-invariant feed conditions over the PGM+Spinel and PGM+CZO catalysts were shown in Fig. S1a. The estimated O_2 concentration profiles were shown in Fig. S1b. The method of estimating the O_2 concentration profile is explained in the next section. In addition, the steam reforming of CH₄ (SRM) performance of the PGM+CZO catalyst is compared with that of the PGM+Spinel catalyst (Fig. S1c).

Fig. S1. (a) CH₄ conversion for modulated [filled symbols] and time-invariant feed [unfilled symbols] over PGM+Spinel and PGM+CZO catalysts; **(b)** estimated O₂ profiles for modulated [filled symbols] and time-invariant [unfilled symbols] feed; **(c)** steam reforming performance of PGM+Spinel, PGM-Only and PGM+CZO catalysts.

Section 2. Estimation of effluent O₂ concentration profile

The effluent O_2 concentration profile was used to denote the transition from the aerobic to the anaerobic regime of CH₄ reaction chemistries. After O_2 depletion, CH₄ steam reforming contributes to the CH₄ conversion. In the flow experiment study, a mass spectrometry was used to measure H₂ and O₂ concentrations. However, the measured O₂ concentration values were not accurate due to the false positive signal of O₂ contributed by the presence of water in the feed. Before measuring O₂, the background was first taken in the presence of 10% H₂O, then O₂ calibration was conducted also in the presence of 10% H₂O. This approach did not guarantee accurate O₂ measurement since the H₂O concentration was not constant throughout the experiment due to the reactions or fluctuation in the vapor feed system. In order to circumvent this issue, the effluent O₂ concentration profiles were estimated instead. In this section, the method used to calculate the O₂ concentration is discussed in detail.

The effluent O_2 concentration profiles were estimated based on the conversions of CH₄, CO, H₂, and the formation of NO₂ (eqn S1 to S4). No CO and H₂ formation were observed until at temperature above 400°C (modulated feed) and above 470°C (time-invaraint feed) for both PGM-Only (30/60a) and PGM+Spinel (30/60/15) catalysts. Thus, CH₄ partial oxidation is not considered to be a pathway for CH₄ oxidation and only CH₄ full oxidation is considered.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 eqn (S1)

$$H_2 + 0.50_2 \rightarrow H_2 O$$
 eqn (S2)

$$CO + 0.5O_2 \rightarrow CO_2$$
 eqn (S3)

$$NO + 0.5O_2 \leftrightarrow NO_2$$
 eqn (S4)

Specifically, formation of NH₃ and N₂O were detected under the full feed conditions. The NH₃ formation originates from the NO reduction by H₂ (eqn S5). The formation of N₂O can come from the reduction of NO by H₂ (eqn S6) and CO (eqn S7). Thus, part of the H₂

and CO conversion came from oxidation reactions with NO. For O_2 concentration calculation, N_2O formation was assumed to occur via eqn S6 only.

$$NO + 2.5H_2 \rightarrow NH_3 + H_2O$$
 eqn (S5)

$$NO + 0.5H_2 \rightarrow 0.5N_2O + 0.5H_2O$$
 eqn (S6)

$$NO + 0.5CO \rightarrow 0.5N_2O + 0.5CO_2$$
 eqn (S7)

To summarize, a few assumptions were made for the O₂ concentration estimation:

1. CH₄ oxidation occurs via full oxidation.

2. The H₂ and CO formations at high temperatures come from CH₄ steam reforming.

3. The NH₃ and N₂O formations come from NO reduction with the H₂ fed before full H₂ consumptions. After the full conversion of H₂, the NH₃ and N₂O formations come from NO reduction with the H₂ formed from CH₄ steam reforming.

While the exact measured O_2 values were not accurate, the slope changes in the profile were used as a reference. In other words, the slope changes in the estimated O_2 profile should be similar such that the estimated O_2 consumption is close to the actual profile. The method of O_2 calculation was demonstrated at the third temperature point (227°C) for the PGM+Spinel (30/60/15) catalyst under both time-invariant and modulated feed conditions. The NO₂, NH₃ and N₂O formation profiles were shown in Fig. S2a and S2b. The specific concentration values of all the species at 227°C were listed in table S2.

Fig. S2. (a) NO₂, NH₃, N₂O formations under time-invariant feed [unfilled symbols] and **(b)** under modulated feed [filled symbols] over PGM+Spinel (30/60/15) catalyst; **(c)** estimated O₂ concentration profile under time-invariant feed and **(d)** under modulated feed over PGM+Spinel (30/60/15) catalyst (top right refers to measured O₂ concentration profiles for comparison).

Table S1. Measured concentration values at 227°C under both time-invariant and modulated feed conditions for PGM+Spinel (30/60/15) catalyst.

Species	Time-invariant feed	Modulated feed
H ₂	288 ppm (71% conversion)	336 ppm (66% conversion)
СО	6382 ppm (20% conversion)	6823 ppm (15% conversion)
CH ₄	1491 ppm (1% conversion)	1500 ppm (0% conversion)

NO	892 ppm (11% conversion)	917 ppm (8% conversion)
NO ₂	1 ppm	0 ppm
NH ₃	70 ppm	60 ppm
N ₂ O	8 ppm	5 ppm
H_2 used for NH_3 and N_2O formation	180 ppm (18% of H_2 fed)	152 ppm (15% of H_2 fed)

The O₂ concentration was calculated based on the following equation:

0_{2,cal}

 $= O_{2,fed} - O_2 used for NO_2 formation - O_2 used for CO oxidation - O_2 used for$ $oxidation - O_2 used for H_2 oxidation$ eqn (S8)

For instance, under time-invariant feed, the calculated O₂ concentration is:

 $O_{2,cal}$ = 5650 - (1 * 0.5) - (0.01 * 20 * 8000 * 0.5) - (0.01 * 1 * 1500 * 2) - (0.01 * 18 * 1000 * 0.5) = 4555 ppm

The last addition term came from the assumption that 18% of H₂ fed was used for NO reduction instead of oxidation.

Similarly, the calculated O₂ concentrations under modulated feed are:

 $\begin{array}{l} O_{2,cal}(lean) \\ = 7900 - (0*0.5) - (0.01*15*8000*0.5) - (0.01*0*1500*2) - \\ + (0.01*15*1000*0.5) = 7045 \ ppm \end{array}$

$$\begin{array}{l} O_{2,cal}(rich) \\ = 3400 - (0*0.5) - (0.01*15*8000*0.5) - (0.01*0*1500*2) - \\ + (0.01*15*1000*0.5) = 2545 \ ppm \end{array}$$

 $O_{2.cal}(avg) = (7045 + 2545)/2 = 4795 \, ppm$

The average estimated O_2 concentration over the lean and rich cycle is 4795 ppm.

Using the method demonstrated above, the O_2 values were calculated for all the temperature points, which were shown in Fig. S2c and S2d. The estimated O_2 profiles have similar slopes compared to the measured O_2 profiles shown in the upper corner of the figures.

Section 3. Repeated CH₄ steam reforming experiment

Repeated steam reforming experiment was conducted on the PGM+Spinel (30/100/25) catalyst. After the first experiment was completed, the catalyst was cooled to ~115°C in the presence of 3% O₂/N₂ then purge with N₂ only for 15 min before the second experiment was started. No CO or CO₂ species was detected during the oxidizing cooling step. As shown in Fig. S3, similar CH₄ conversion profile was obtained in the second run as compared to the profile shown in Fig. 6. The CH₄ conversion reached a maximum value at ~50% but subsequently dropped to ~3% conversion.

Fig. S3. CH_4 conversion under two steam reforming runs over PGM+Spinel (30/100/25) catalyst [cooling condition after first run: 3% O_2/N_2]

Section 4. Adsorption behavior of MnO_xH_y on Pt(211)

Adsorption behavior of MnO_xH_y species on step site of Pt(211) was evaluated to probe the ease of Pt encapsulation by Mn oxides and hydroxides. Adsorption of MnO monomers on Pt(211) steps was found to be endothermic. The favorable adsorption of MnOH monomers on Pt(211) and when embedded in Pt(211) shows possibility of Pt site blocking by MnO_xH_y species.

Fig. S4. Left panel: Energy of adsorption of MnO_xH_y monomers on the step site of Pt(211). Right panel: Energy for embedding MnO_xH_y monomers in Pt(211) steps.

Section 5. Estimated effluent O₂ profile of the zoned catalysts

As discussed in section 1, the same approach was used to obtain the estimated O_2 profile of the zoned catalysts under both time-invariant and modulated feed conditions, as shown in Fig. S5.

Fig. S5. Estimated O₂ effluent concentration of the zoned catalysts under time-invariant [unfilled symbols] and modulated feeds [filled symbols]

Section 6. Normalized DRIFTS spectra of the PGM-Only and PGM+Spinel catalysts

The CO-DRIFTS experiments were carried out to obtain semi-quantitative information such as peak area loss. The CO peak area loss before and after steam reforming could be quantified from the normalized spectra. However, the obtained area values would largely depend on the chosen wavenumber range and the baseline correction method. Thus, the quantification based on DRIFTS data on different samples are not conclusive. Nevertheless, the normalized spectra can be used to obtain some useful information. In this section, normalized spectra based on different wavenumber ranges, of samples treated with different experimental conditions were provided and compared.

The measured transmittance I were normalized based on the following equation:

Normalized I =
$$\frac{(I - I_{min})}{(I_{max} - I_{min})}$$

The I_{min} and I_{max} represent the minimum and maximum measured transmittance within a range of wavenumber. For example, in Fig. S6.1a, the spectra of the fresh PGM-Only and fresh PGM+Spinel were normalized in the wavenumber range of 1150 to 3700 cm⁻¹ and in Fig. S6.1b, the spectra were normalized in the wavenumber range of 1970 to 2110 cm⁻¹. Normalized spectra based on different wavenumber ranges were provided in Fig. S6.2 ~ S6.4 as well.

Fig. S6. 1. (a) Normalized DRIFTS spectra of fresh PGM-Only and PGM+Spinel catalyst in normalized wavenumber range of 1150 to 3700 cm⁻¹ and **(b)** in normalized wavenumber range of 1970 to 2110 cm⁻¹

As shown in Figs. S6.1a and S6.1b, the CO adsorption peaks on Pt are similar for both fresh PGM-Only and fresh PGM+Spinel catalyst. This suggests that adding spinel to the PGM-Only catalyst has a negligible impact on the CO adsorption on Pt.

Fig. S6. 2. (a) Normalized DRIFTS spectra of fresh PGM-Only and post-1 SR run PGM-Only catalyst in normalized wavenumber range of 1150 to 3700 cm⁻¹ and **(b)** in normalized wavenumber range of 1970 to 2110 cm⁻¹

After 1 steam reforming run, the intensity of the CO-Pt-CO peak increases for the PGM-Only catalyst as shown in Figs. S6.2a and S6.2b. This may suggest more Pt site for CO co-adsorption is available after reaction.

Fig. S6. 3. (a) Normalized DRIFTS spectra of fresh PGM+Spinel and post-1 SR run PGM+Spinel catalyst in normalized wavenumber range of 1150 to 3700 cm⁻¹ and **(b)** in normalized wavenumber range of 1970 to 2110 cm⁻¹

Similar data for the PGM+Spinel catalyst in Figs. S6.3a and S6.3b reveal that CO prefer to co-adsorb on Pt after 1 steam reforming run, as illustrated by the change in dominant CO adsorption peak from CO-Pt to CO-Pt-CO. The change in the CO adsorption behavior may be altered by the interaction between migrated base metal species and Pt site, or the sintering of particular Pt site. However, these possibilities can not be validated without more in-depth surface characterization and thus, not explored further in the current study.

Fig. S6. 4. (a) Normalized DRIFTS spectra of post-1 SR run PGM-Only and post-1 SR run PGM+Spinel catalyst in normalized wavenumber range of 1150 to 3700 cm⁻¹ and **(b)** in normalized wavenumber range of 1970 to 2110 cm⁻¹

The normalized spectra of the PGM-Only and PGM+Spinel samples after one SR treatment are compared in Figs. S6.4a and S6.4b. As discussed above, different CO adsorption features on Pt sites were observed for the PGM-Only and PGM+Spinel samples after one SR treatment. The alteration in CO adsorption behavior due to possible site changes induced by the steam reforming reaction, Pt sintering or interaction from the migrated base metal species are out of the scope of the current study and thus, are not further discussed here.

Section 7. Effect of overall spinel loading on catalyst performance

The correlation of T_{50} values and the overall spinel loading of the catalyst is shown in Figs. S7a and S7b. Under both modulated and time-invariant feed conditions, PGM+Spinel (30/140/35) catalyst, which has a higher spinel loading of 35 g/L compared to the other two catalysts (30/100/25, 30/60/15), gives the lowest T_{50} values. The performance improvement of the zoned catalyst #2 is therefore, explained by its high spinel loading in the front oxidation zone.

Fig. S7. CH_4 conversion profiles of PGM+Spinel catalysts (30/140/35, 30/100/25, 30/60/15) and zoned catalyst #2 under (a) time-invariant feed [unfilled symbols] and (b) under modulated feed [filled symbols]