Bimetallic sites and metalloid coordination effects: electronic structure

engineering of NiCo-based sulfide for 5-hydroxymethylfurfural electrooxidation

Zhefei Zhao^a, Tianyang Guo^a, Xingyu Luo^a, Xuetao Qin^c, Lingxia Zheng^{a,b}, Li Yu^a, Zhuoqing Lv^a, Ding Ma^c, Huajun Zheng^{*a,b}

a: Department of Applied chemistry, Zhejiang University of Technology, Hangzhou 310032, P. R. China.

b: State key laboratory breeding base of green chemistry synthesis technology, Zhejiang University of Technology, Hangzhou 310032, P. R. China.

c: Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China.

*E-mail: <u>zhenghj@zjut.edu.cn;</u>

Fig. S1. SEM images of (a) NiCo-MOF, (b) NiCo-O, (c) Ni-S, and (d) Co-S samples.

Fig. S2. SEM images of NiCo-S samples with various Ni to Co ratio (a) NiCo-S-1, (b) NiCo-S-2, (c) NiCo-S, and (d) NiCo-S-4.

Fig. S3. XRD patterns of NiCo-O, Ni-S and Co-S powder sample.

Fig. S4. N_2 adsorption-desorption isotherms of the four samples, the inset shows the corresponding pore size distribution.

Fig. S5. Two pathways of the oxidation of HMF to FDCA.

Fig. S6. Conversion of HMF and yield/FE/selectivity of FDCA obtained by NiCo-S electrode at different potential in 1 M KOH with 10 mM HMF.

Fig. S7. Comparison of HMF oxidation current density at the potential between 1.35 to 1.5 V vs RHE.

Fig. S8. The LSV for bimetallic sulfide catalysts with various Ni to Co ratio measured from 1.1 V to 1.6 V vs. RHE at a scan rate of 10 mV s⁻¹ in 1 M KOH with 10 mM HMF.

Fig. S9. Conversion of HMF and yield/FE/selectivity of FDCA of sulfides with varied Ni/Co ratios. The above tests were examined in 1 M KOH with 10 mM HMF at 1.45 V vs. RHE.

Fig. S10. The relative selectivity of different products obtained by NiCo-S, Ni-S, and Co-S electrodes. The above tests were carried out in 1 M KOH with 10 mM HMF at 1.3 V *vs* RHE.

Fig. S11. Experimental and best fitted EXAFS spectra in the R space of Ni-S (a), and NiCo-S (b) with Ni foil (c) and NiO (d) as the references at the Ni K-edge.

Fig. S12. Experimental and best fitted EXAFS spectra in the R space of Co-S (a), and NiCo-S (b) with Co foil (c) and CoO (d) as the references at the Co K-edge.

Fig. S13. Cyclic voltammetry curves of the (a) NiCo-O, (b) Ni-S and (c) Co-S electrodes from 40 to 100 mV s⁻¹.

Fig. S14. EIS of NiCo-S electrode with or without 10 mM HMF.

Fig. S15. XPS survey of the NiCo-S catalyst.

Fig. S16. SEM images of NiCo-S electrode after electrolysis.

Fig. S17. The most sable C-OH single group adsorption model on NiS and Co₃S₄.

Fig. S18. The most sable CH=O single group adsorption model on NiS and Co₃S₄.

10010 0111						
Sample	Elements	Sample element content Sample element c				
		Cx(mg kg ⁻¹)	W(%)			
NiCo-S	Ni	100992.65	10.10			
	Co	228036.42	22.80			
	S	186272.20	18.63			

Table S1. Percentage composition of NiCo-S from ICP-OES results.

Table S2. The BET surface area and pore diameter of the different catalysts.

Samples	S _{BET} (m ² g ⁻¹)	Pore diameter (nm)
NiCo-S	59.90	10.12
NiCo-O	57.80	16.10
Ni-S	8.29	6.81
Co-S	31.50	6.848
00-5	51.50	0.040

Catalysts	Eletrolyte	Onset potential/V (vs.	Oxidation potential/V (vs.	Yield	Conversion	Selectivity	FE	Ref.
		RHE)	RHE)	(%)	(%)	(%)	(%)	
Pd ₁ Au ₂ /C	0.1M KOH+20mM	0.3	0.9	83	100			1
	HMF							
CuxS@NiCo-LDH	1M KOH+10mM	1.25	1.32	99	100		99	2
	HMF							
NiCo ₂ O ₄	1M KOH+5mM HMF	1.2	1.5	90.4	99.6	90.8	87.5	3
NixCo ₃ -xO ₄	0.1M KOH+10mM	1.35	1.55	90	100		100	4
	HMF							
NiFe-LDH	1M KOH+10mM	1.25	1.33	98	98		98.6	5
	HMF							
CuNi(OH) ₂ /C	1M KOH+5Mm HMF	1.38	1.45	93.3	98.8		94.4	6
NiCo ₂ S ₄	1M KOH+10mM	1.2	1.45	97.1	99.1	98	96.4	This
	HMF							work

 Table S3. Comparison of the performance for bimetallic catalysts.

Sample	Shell	Bond length (Å)	Coordination Number	σ ² (Å ²)	E ₀ shift (eV)	R-factor (*10 ⁻³)
Co foil	Co-Co	2.49	12	0.006	7.9	4.2
Co-S	Co-S	2.31	6	0.006	-5.8	12.2
NiCo-S	Co-S	2.33	5.2	0.006	0.0	18.2
Ni foil	Ni-Ni	2.48	12	0.006	5.9	1.4
Ni-S	Ni-S	2.28	6	0.0011	-5.3	11.9
NiCo-S	Ni-S	2.29	5.4	0.007	-8.5	4.7

Table S4. Summary of coordination number of Co-Co, Co-S, Ni-Ni and Ni-S in catalysts corresponding to Fig. 4.

 Table S5. Summary of the ECSA results for NiCo-S, NiCo-O, Ni-S and Co-S catalysts.

	NiCo-S	NiCo-O	Ni-S	Co-S
C _{dl} (mF)	15.89	15.72	1.52	0.78
$C_s (mF cm^{-2})$	0.04	0.04	0.04	0.04
ECSA (cm ²)	397.25	393	38	19.50

Table S6. Corresponding fitted parameters of proposed equivalent circuit for NiCo-S, NiCo-O, Ni-S and Co-S catalysts.

Catalysts	$R_{s}(m\Omega)$	R_{ct} (m Ω)	Q _{dl} (µF)	ZW (DW)
NiCo-S	129	668	28.8	1.98
NiCo-O	0.0739	824	66.2	5.37
Co-S	0.726	1060	28.2	6.91
Ni-S	126	777	55.3	2.65

Table S7. Percentage composition of Ni and Co for the fresh and post NiCo-S samples from XPS results.

Percentage (%)	Ni ³⁺	Ni ²⁺	C0 ³⁺	C0 ²⁺
Fresh NiCo-S	11.2	35.2	24.1	44.25
Post NiCo-S	15.5	30.4	15.48	39.15

Table S8.	Percentage com	position of	post-electrolytic	solution from	n ICP-OES results.
	<u> </u>				

Elements	Sample element content Cx	
	(mg L ⁻¹) in solution	
Ni	<0.02	
Со	< 0.02	
S	0.17	

References

- 1. D. J. Chadderdon, L. Xin, J. Qi, Y. Qiu, P. Krishna, K. L. More and W. Li, *Green Chem.*, 2014, **16**, 3778-3786.
- 2. X. Deng, X. Kang, M. Li, K. Xiang, C. Wang, Z. Guo, J. Zhang, X.-Z. Fu and J.-L. Luo, *Journal of Materials Chemistry A*, 2020, **8**, 1138-1146.
- 3. M. J. Kang, H. Park, J. Jegal, S. Y. Hwang, Y. S. Kang and H. G. Cha, *Applied Catalysis B: Environmental*, 2019, **242**, 85-91.
- 4. L. Gao, Y. Bao, S. Gan, Z. Sun, Z. Song, D. Han, F. Li and L. Niu, *ChemSusChem*, 2018, **11**, 2547-2553.
- 5. H. Chen, J. Wang, Y. Yao, Z. Zhang, Z. Yang, J. Li, K. Chen, X. Lu, P. Ouyang and J. Fu, *ChemElectroChem*, 2019, **6**, 5797-5801.
- 6. W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin and G. W. Huber, ACS Catalysis, 2018, **8**, 5533-5541.
- Deng, M. Li, Y. Fan, L. Wang, X.-Z. Fu and J.-L. Luo, Applied Catalysis B: Environmental, 2020, 278, 119339-119351.s