Supporting Information.

The Oxidative Degradation of Phenol via in-situ H_2O_2 Synthesis Using Pd Supported Fe-modified ZSM-5 Catalysts.

Alba Santos,^[a] Richard J. Lewis,^[a] David J. Morgan,^{[a][b]} Thomas E. Davies,^[a] Euan Hampton,^[c] Paul Gaskin^[c] and Graham J. Hutchings^{*[a]}

^[a]Max Planck centre for Fundamental Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

^[b]HarwellXPS, Research Complex at Harwell (RCaH), Didcot, OX11 OFA, United Kingdom.

^[c]Dŵr Cymru Welsh Water, Pentwyn Road, Nelson, Treharris, CF46 6LY, United Kingdom.

⁺These authors contributed equally to this work

* LewisR27@Cardiff.ac.uk, Hutch@Cardiff.ac.uk

Figure S.1. The proposed oxidative degradation products of phenol.

Table S.1. Nominal and actual metal loading of 0.5%Pd/Fe-ZSM-5 catalysts, as determined by microwave aqua regia assisted digestion of fresh materials.

Catalyst	Actual Pd loading / wt.%	Actual Fe loading / wt.%
0.5 wt.%Pd/3 %Fe-HZSM-5	0.51	2.69
0.5 wt.%Pd/1%Fe-HZSM-5	0.47	0.73
0.5 wt.%Pd/0.5%Fe-HZSM-5	0.51	0.45
0.5 wt.%Pd/0.125%Fe-HZSM-5	0.48	0.15
0.5 wt.%Pd/0.06%Fe-HZSM-5	0.50	0.05
0.5 wt.%Pd/HZSM-5	0.51	0.00
HZSM-5 (28) (synthesised)	0.0	0.00

Note: All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5%H₂/Ar).

Figure S.2. UV-visible reflectance spectra of 0.5.%Pd/Fe-ZSM-5 catalysts, as a function of total Fe incorporation. (A) 0.5%Pd/ZSM-5, (B) 0.5%Pd/0.06%Fe-ZSM-5, (C) 0.5%Pd/0.125%Fe-ZSM-5, (D) 0.5%Pd/0.5%Fe-ZSM-5, (E) 0.5%Pd/1%Fe-ZSM-5 and (F) 0.5%Pd/3%Fe-ZSM-5 Note: All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5%H₂/Ar).

Supplementary Note 1.

The presence of reflectance bands between 200-250 nm (orange) and 250-350 nm (blue) are considered to be indicative of Fe^{3+} tetrahedrally coordinated within the ZSM-5 lattice, in addition to isolated and bi-nuclear Fe species immobilised within the zeolitic framework channels. While the bands observed above 450 nm (yellow) are attributed to the presence of extra-framework Fe_xO_y particles (clusters and agglomerates).¹

Figure S.3. FTIR spectra of 0.5.%Pd/Fe-ZSM-5 catalysts, as a function of total Fe incorporation. (A) commercial ZSM-5, (B) 0.5%Pd/ZSM-5, (C) 0.5%Pd/0.06%Fe-ZSM-5, (D) 0.5%Pd/0.125%Fe-ZSM-5, (E) 0.5%Pd/0.5%Fe-ZSM-5, (F) 0.5%Pd/1%Fe-ZSM-5 and (G) 0.5%Pd/3%Fe-ZSM-5. Note: All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5%H₂/Ar).

Supplementary Note 2.

It is possible to observe three distinct bands in the FTIR spectra of the 0.5.%Pd/Fe-ZSM-5 catalysts, at approximately 800, 1050 and 1220 cm⁻¹, which is characteristic of the SiO₄ tetrahedron units. The adsorption band at 1050 cm⁻¹ is attributed to the internal asymmetric stretching vibrations of Si-O linkages and has been observed to shift towards higher wavenumbers with increasing SiO₂: Al₂O₃ ratios. The adsorption band at 1220 cm⁻¹ is typically utilised to provide information on the structure of the zeolite and has been assigned to the 5-membered rings present within the framework structure of ZSM-5.² The bands at 800 cm⁻¹ are assigned to the symmetric stretching of the external linkages of the SiO₄ tetrahedron.

Figure S.4. X-ray diffractograms of 0.5.%Pd/Fe-ZSM-5 catalysts, as a function of total Fe incorporation. **(A)** commercial ZSM-5, **(B)** 0.5%Pd/ZSM-5 **(C)** 0.5%Pd/0.06%Fe-ZSM-5 **(D)** 0.5%Pd/0.125%Fe-ZSM-5 **(E)** 0.5%Pd/0.5%Fe-ZSM-5 **(F)** 0.5%Pd/1%Fe-ZSM-5 **(G)** 0.5%Pd/3%Fe-ZSM-5. **Note 1:** All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5%H₂/Ar). **Note 2**: Values in parentheses indicate crystallinity of synthesised materials, as compared to commercial ZSM-5.

Supplementary Note 3.

Reflection's characteristic of ZSM-5 can be observed at θ =7-9° and θ =23-25°.³

Catalysts	Surface area / m ² g ^{-1[a]}	V _{micropore}	
		cm³g⁻¹	
0.5 wt.%Pd/3 %Fe-HZSM-5	259	0.04	
0.5 wt.%Pd/1%Fe-HZSM-5	281	0.05	
0.5 wt.%Pd/0.5%Fe-HZSM-5	345	0.07	
0.5 wt.%Pd/0.125%Fe-HZSM-5	348	0.08	
0.5 wt.%Pd/0.06%Fe-HZSM-5	399	0.07	
0.5 wt.%Pd/HZSM-5	407	0.09	
	491	0.11	
HZSM-5 (28) (synthesised)	516	0.12	
HZSM-5 (30) (commercial)	413	0.15	

Table S.2. Summary of porosity and surface area of 0.5.%Pd-Fe-ZSM-5 catalysts as a function of Fe incorporation.

^[a] Surface area determined from nitrogen adsorption measurements using the BET equation. **Note:** Synthesised and commercial ZSM-5 materials were exposed to an oxidative heat treatment (flowing air, 550 °C, 3 h, 1 °Cmin⁻¹), while metal immobilised catalysts were exposed to an oxidative heat treatment (static air, 550 °C, 3 h, 10 °Cmin⁻¹), prior to a subsequent reductive heat treatment (5%H₂/Ar, 400 °C, 4 h, 10 °Cmin⁻¹).

Figure S.5. Catalytic performance of ZSM-5 based catalysts towards the oxidative degradation of phenol via in-situ H_2O_2 synthesis. *Key*: Selectivity towards phenolic derivatives (Red bar), Selectivity towards organic acids (Blue bar), H_2 conversion (Black squares). **Phenol oxidation reaction conditions**: Catalyst (0.01 g), Phenol (1000 ppm), 5% H_2/CO_2 (420 psi), 25% O_2/CO_2 (160 psi),1200 rpm, 30 °C, 2 h. **Note 1** : Total metal loading is identical in all cases. **Note 2:** All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5% H_2/Ar).

Figure S.6. The effect of oxidant on the catalytic activity of 0.5%Pd/0.5%Fe-ZSM-5 catalyst towards the oxidative degradation of phenol. *Key*: Selectivity towards phenolic derivatives (Red bar), Selectivity towards organic acids (Blue bar), H₂ conversion (Black squares). **Phenol oxidation reaction conditions**: Catalyst (0.01 g), Phenol (1000 ppm), 5% H₂/CO₂ (420 psi), 25% O₂/CO₂ (160 psi),1200 rpm, 30 °C, 2 h. **Note 1:** The concentration of preformed H₂O₂ utilised is comparable to that produced if all H₂ in a standard in-situ reaction is converted to H₂O₂. **Note 2:** All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5% H₂/Ar).

Figure S.7. Fe(2p) core levels spectra for **(A)** 0.5%Pd/0.06%Fe-ZSM-5, **(B)** 0.5%Pd/0.125%Fe-ZSM-5, **(C)** 0.5%Pd/0.5%Fe-ZSM-5, **(D)** 0.5%Pd/1%Fe-ZSM-5 and **(E)** 0.5%Pd/3% Fe-ZSM-5. **Note:** All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5%H₂/Ar).

Catalyst	Al 2p	Si 2p	C 1s	Fe 2p	O 1s	Pd 3d (Metallic)	Pd 3d (2+)	Pd ²⁺ /Pd ⁰	Pd/Si
0.5wt.%Pd/3.0wt.%Fe/ZSM-5	1.9	33.4	4.8	0.3	59.6	0.03	0.01	0.33	0.0012
0.5wt.%Pd/1.0wt.%Fe/ZSM-5	1.5	33.1	6.4	0.2	58.8	0.04	0.02	0.50	0.0018
0.5wt.%Pd/0.5wt.%Fe/ZSM-5	1.4	35.0	2.3	0.1	61.2	0.07	0.02	0.29	0.0026
0.5wt.%Pd/0.125wt.%Fe/ZSM-5	1.6	33.2	6.2	0.0	59.0	0.02	0.02	1.00	0.0012
0.5wt.%Pd/0.06wt.%Fe/ZSM-5	1.5	32.7	8.2	n/d	57.6	0.03	0.02	0.67	0.0015
0.5wt.%Pd/ZSM-5	1.4	33.0	7.2	0.0	58.4	0.02	0.01	0.50	0.0009

Table S.3. Atomic ratios of key catalytic species, as determined by XPS.

Note: All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5%H₂/Ar).

Figure S.8. Comparison of catalytic activity towards the direct synthesis of H_2O_2 , as a function of reaction time. (A) 0.5%Pd/ZSM-5, (B) 0.5%Pd/0.06%Fe-ZSM-5, (C) 0.5%Pd/0.125%Fe-ZSM-5, (D) 0.5%Pd/0.5%Fe-ZSM-5, (E) 0.5%Pd/1%Fe-ZSM-5, (F) 0.5%Pd/3%Fe-ZSM-5. H_2O_2 direct synthesis reaction conditions: Catalyst (0.01 g), H_2O (8.5 g), $5\%H_2/CO_2$ (420 psi), $25\%O_2/CO_2$ (160 psi), 30 °C, 1200 rpm. Note: All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, $5\%H_2/Ar$).

Figure S.9. Transmission electron micrographs and corresponding particle size histograms of the asprepared (A) 0.5%Pd/ZSM-5 and (B) 0.5%Pd/3%Fe-ZSM-5 catalysts. **Note:** All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5%H₂/Ar).

Catalyst	Phenol	Selectivity towards	Selectivity	Metal Leached	
		Pnenolic Dorivativos / %	towards Organic		
	1 70	Derivatives 1 %	Acius /%	/ ppi	11 (70)
				Pd	Fe
0.5%Pd/ZSM-5	39	29	71	0.3	-
				(4.4%)	
0.5%Pd/3%Fe-ZSM-5	70	29	71	0.2	2.3
				(3.0%)	(6.4%)

Table S.4. Metal leaching during the oxidative degradation of phenol via in-situ H₂O₂ synthesis

Phenol oxidation reaction conditions: Catalyst (0.01 g), Phenol (100ppm), 5% H_2/CO_2 (420 psi), 25% O_2/CO_2 (160 psi),1200 rpm, 2 h, 30 °C. **Note:** All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5% H_2/Ar).

Catalyst	Time	Phenol	Selectivity towards	Selectivity	
	/ h	Conversion	Phenolic Derivatives / %	towards	
		/ %		Organic Acids	
				/%	
0.5%Pd/ZSM-5	1	32.0	26.0	74.0	
	2	38.0	30.0	70.0	
0.5%Pd/3%Fe-ZSM-5	1	56.0	35.0	65.0	
	2	72.0	26.0	74.0	
0.5%Pd/3%Fe-ZSM-5 (hot filtration)	2	58.0	29.0	71.0	
0.5%Pd/3%Fe-ZSM-5 (hot filtration) with 0.5%Pd/ZSM-5	2	72.0	16.0	84.0	
0.5%Pd/3%Fe-ZSM-5 (hot filtration) with H ₂ O ₂ *	2	65.0	22.0	78.0	

Table S.5. Product distribution in the oxidative degradation of phenol via in-situ H₂O₂ synthesis.

Phenol oxidation reaction conditions: Catalyst (0.01 g), Phenol (1000ppm), 5% H₂/CO₂ (420 psi), 25% O₂/CO₂ (160 psi),1200 rpm, 30 °C. *During the second 1 h hot-filtration experiment a concentration of H₂O₂ was used that was identical to that if all the H₂ in a standard in-situ reaction was converted to H₂O₂, an atmosphere of $25\%O_2/CO_2$ (580 psi) was used. **Note:** All samples exposed to reductive heat treatment (4 h, 500 °C, 10 °C min⁻¹, 5% H₂/Ar).

References.

- 1. J. Xu, R. D. Armstrong, G. Shaw, N. F. Dummer, S. J. Freakley, S. H. Taylor and G. J. Hutchings, *Catal. Today*, 2016, **270**, 93-100.
- 2. L. Shirazi, E. Jamshidi and M. R. Ghasemi, *Cryst. Res. Technol.*, 2008, **43**, 1300-1306.
- 3. R. J. Lewis, A. Bara-Estaun, N. Agarwal, S. J. Freakley, D. J. Morgan and G. J. Hutchings, *Catal. Lett.*, 2019, **149**, 3066-3075.