Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

1 Supporting Information

2

3 A Doping Element Improving the Properties of Catalysis: In Situ

4 Raman Spectroscopy Insight into Mn-doped NiMn Layered Double

5 Hydroxide for Urea Oxidation Reaction

6

7 Xu Yang ¹, Huimin Zhang ², Wei Xu ¹, Binbin Yu ³, Yan Liu ⁴, Zucheng Wu ^{1,*}

- 8
- 9¹ Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
- 10² School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang
- 11 330013, China
- 12³ College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000,
- 13 China
- 14 ⁴ School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
- 15 *E-mail: wuzc@zju.edu.cn
- 16

2 **Figure S1**. (a) Partially enlarged XRD patterns; (b) STEM image of $Ni_{0.67}Mn_{0.33}$ LDHs and (c) 3 corresponding elemental mapping images of Ni, Mn and O; XPS spectra of (d) Mn 2p and (e) 4 Mn 3s of $Ni_{0.67}Mn_{0.33}$ /CFP; (f) XPS spectra of Ni $2p_{3/2}$ of the samples; (g) CV plots of the 5 samples in 1 M KOH at 10 mV s⁻¹.

1

7 Note:

8 The scanning TEM (STEM) elemental mapping images were taken with a JEM-2100F9 microscope.

10

11 The heteroatom doping tends to cause the XPS Ni 2p_{3/2} peak position of the host Ni(OH)₂-12 based species to shift to the direction of high binding energy, which indicates a strong 13 electronic interaction between the doping element and the host element, similar with those 14 reported in literature.[1-4] In the CV of Mn-doped Ni(OH)₂, the lower oxidation peak 15 potential and negatively shifted onset potential of Ni²⁺ oxidation also reflect this electronic 16 interaction implying a higher oxidation state. The consistence of both CV and XPS showed a 17 higher oxidation capacity of the Ni species doped with Mn.

18

2 Figure S2. Raman spectra for NiMn samples under open circuit potential conditions in 1 M

- 3 KOH.

Figure S3. (a–d) LSV curves of Au foil supported $Ni(OH)_2$ and NiMn with desired metal 8 ratios in 1 M KOH and 1 M KOH + 0.33 M urea at a scan rate of 1 mV s⁻¹.

2 Figure S4. CV curves of (a) Ni(OH)₂/CFP and (b-f) Ni_{1-x}Mn_x/CFP in 1 M KOH and 1 M

- 3 KOH + 0.33 M urea at a scan rate of 10 mV $s^{-1}.$
- 4

6 Figure S5. (a–f) LSV curves of Ni(OH)₂/CFP and Ni_{1-x}Mn_x/CFP in 1 M KOH and 1 M KOH 7 + 0.33 M urea at a scan rate of 1 mV s⁻¹; (g) UOR onset potentials of the samples with 8 various Mn content in 1 M KOH + 0.33 M urea. Error bars indicate the standard deviation of 9 three tests.

2

4 Figure S6. (a–b) In situ Raman spectra of the four samples at 0.1 V and 0.55 V vs. Hg/HgO; 5 (c) Raman peak positions of the two main bands corresponding to Ni–O in NiOOH of the four 6 samples at 0.55 V; (d) the 560 cm⁻¹/480 cm⁻¹ Raman peak intensity ratio (I_{560}/I_{480}) versus the 7 applied potential. Electrolyte condition: 1 M KOH + 0.33 M urea.

8

3

9

10

11 Figure S7. Nyquist plots collected for the samples in 1 M KOH + 0.33 M urea at 0.45 V vs.

12 Hg/HgO.

3 Figure S8. (a–f) CV curves of Ni(OH)₂/CFP, Ni_{1-x}Mn_x/CFP samples in a narrow potential 4 range for non-Faraday reaction in 1 M KOH with different scan rates; (g) estimation of 5 electrochemical double layer capacitance (C_{dl}) of the samples.

2

9 Figure S9. (a) The long-term stability performance of $Ni_{0.67}Mn_{0.33}$ /CFP at a constant current 10 density of 150 mA cm⁻²; (b) comparison of LSV plots of $Ni_{0.67}Mn_{0.33}$ /CFP before and after 11 stability test. The electrolyte: 1 M KOH + 0.33 M urea. The LSV scan rate: 1 mV s⁻¹.

Table S1. The catalyst loadings of Ni(OH)₂/CFP and Ni_{1-x}Mn_x/CFP samples, and elemental
 compositions for Ni_{1-x}Mn_x/CFP samples.

Sample	Catalyst loading	Ni:Mn atomic ratio	
	$(mg \ cm^{-2})$		
Ni(OH) ₂ /CFP	2.48	-	
Ni _{0.9} Mn _{0.1} /CFP	2.74	0.93:0.07	
Ni _{0.8} Mn _{0.2} /CFP	2.64	0.84:0.16	
Ni _{0.67} Mn _{0.33} /CFP	2.55	0.68:0.32	
Ni _{0.5} Mn _{0.5} /CFP	2.90	0.55:0.45	
Ni _{0.2} Mn _{0.8} /CFP	2.50	0.18:0.82	

1 Table S2. Comparison of the electrocatalytic UOR performance of recent NiMn compound

2 catalysts.

Sample	Electrolyte	Performance	Stability	Reference
Ni _{0.67} Mn _{0.33}	1 М КОН	510.8 mA cm ⁻²	12 h @ 150 mA	This work
LDH/CFP	+ 0.33 M	@ 0.6 V vs.	cm^{-2}	
	urea	Hg/HgO ^{a)}		
Mn-doped	1 M KOH	$133.7 \text{ mA } \text{cm}^{-2}$	42 h @ 1.385 V vs.	ACS EST Engg., 2022,
Ni(OH) ₂ /CP	+ 0.5 M	@ 1.45 V vs.	RHE below 55 mA	DOI:
	urea	RHE ^{b)}	cm ⁻² in 1 M KOH	10.1021/acsestengg.1c0
			with continued	0400.
			refreshing of 0.5 M	
			urea	
Ni foam@Ni-MnO ₂	1 М КОН	150 mA cm ⁻² @	5 h @ 0.5 V vs. SCE	J. Alloys Compd., 2022,
	+ 0.33 M	0.60 V vs. SCE ^{c)}		894, 162515
	urea			
Ultrathin NiMn-	1 М КОН	20 mA cm^{-2} @	25 h @ ≈34 mA	Appl. Catal. A: Gen.,
LDH/CFC	+ 0.5 M	1.351 V vs. RHE	cm ⁻² , reduction of	2021, 614, 118049
	urea	b)	2.8%	
Striped	1 М КОН	100 mA cm ⁻² $@$	10 h @ 10 mA cm^{-2}	Surf. Coat. Technol.,
(Mn,Ni)O(OH)/NF	+ 0.5 M	1.40 V vs. RHE		2021, 408, 126799
	urea	b)		
Mn-Ni ₃ S ₂ /NF-0.2	1 М КОН	100 mA cm ⁻² $@$	20000 s @ 1.424 V	ACS Sustainable Chem.
	+ 0.5 M	1.397 V vs. RHE	vs. RHE	Eng., 2020, 8,
	urea	c)		8348-8355
NiMn-CNFs 10%	1 М КОН	Peak current	Multistep	Int. J. Hydrogen Energy,
	+ 2 M urea	density of 79 mA	chronoamperometry	2018, 43, 5561–5575
		cm^{-2} (at 50 mV	from 0.4 to 1.2 V vs.	
		s ⁻¹) ^{c)}	RHE within 2700 s	
Mn-Ni(OH) ₂ /CFC	1 М КОН	100 mA cm^{-2} @	11 h @ ≈20 mA	Chem. Commun., 2017,
	+ 0.5 M	\approx 1.52 V vs. RHE	cm^{-2}	53, 10711
	urea	a)		
NiMn-CNFs	1 М КОН	Peak current	900 s @ 0.6 V vs.	Appl. Catal. A: Gen.,
	+ 1 M urea	density of 300	Ag/AgCl in 1 M	2016, 510, 180–188

		mA cm $^{-2}$ g $^{-1}$ (at	KOH + 2 M urea,	
		$50 \text{ mV s}^{-1})^{\text{ c})}$	from $\approx 350 \text{ mA cm}^{-2}$	
			g^{-1} to ${\approx}150~mA~cm^{-2}$	
			g^{-1}	
Ni _{1.5} Mn _{1.5} O ₄ /C	1 М КОН	Peak current	1000 s @ 0.5 V vs.	ACS Appl. Mater.
	+ 0.33 M	density of 6.9	Ag/AgCl	Interfaces, 2016, 8,
	urea	mA $\rm cm^{-2}$ (at 10		12176-12185
		mV s ⁻¹ , 50 μg		
		cm ⁻²) ^{c)}		
Ni-Mn-Se/NF	1 М КОН	400 mA cm ^{-2} @	50 h @ 200 mA	Chem. Commun., 2022,
	+ 0.33 M	\approx 1.53 V vs. RHE	cm ^{-2} , from 1.474 V	58, 3545–3548
	urea	b)	to 1.492 V (vs.	
			RHE)	
N-	1 М КОН	100 mA cm ⁻² @	2000 CV cycles	Int. J. Hydrogen Energy,
Ni ₁ Co ₃ Mn _{0.4} O/NF	+ 0.5 M	1.399 V vs. RHE		2022, 47, 5766–5778
	urea	c)		

1 Note: a) without iR correction; b) with iR correction; c) unknown whether iR correction was used.

2 CFP: carbon fiber paper; CP: carbon paper; CFC: carbon fiber cloth; CNF: carbon nanofiber; NF: Ni foam.
3

4

5

6 References:

7 [1] X. H. Sun, Q. Shao, Y. C. Pi, J. Guo and X. Q. Huang, J. Mater. Chem. A, 2017, 5, 77698 7775.

9 [2] X. Zhang, G. Liu, C. Zhao, G. Wang, Y. Zhang, H. Zhang and H. Zhao, Chem. Commun.,

- 10 2017, 53, 10711-10714.
- 11 [3] B. Dong, W. Li, X. X. Huang, Z. S. Ali, T. Zhang, Z. Y. Yang and Y. L. Hou, Nano
- 12 Energy, 2019, 55, 37-41.
- 13 [4] Y. P. Lin, H. Wang, C. K. Peng, L. M. Bu, C. L. Chiang, K. Tian, Y. Zhao, J. Q. Zhao, Y.

14 G. Lin, J. M. Lee and L. J. Gao, Small, 2020, 16, 2002426.

15