Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Figures and Tables

Fig. S1. SEM image of as-prepared hierarchical porous 2D ultrathin $g-C_3N_4$ nanosheets.

Fig. S2. Particle size analysis and distribution of the TEM images of the hierarchical porous $Co_{2.5}-C_{TA1}@g-C_3N_4-700^{\circ}C$ nanosheets by using a semiautomated sizing approach. Scale bars, 100 nm.

Fig. S3. EDX mapping of the $Co_{2.5}$ - C_{TA1} @g- C_3N_4 -700°C graphite-carbon hybrid heterostructured nanosheets. Scale bars, 5 um.

Fig. S4. The elemental analysis spectrum from EDX mapping of the hierarchical porous $Co_{2.5}-C_{TA1}@g-C_3N_4$ graphite-carbon hybrid nanosheets calcinated at 700°C.

Element	Atomic number	Normalized atomic mass (%)
С	6	73.60
Со	27	8.22
0	8	5.00
Ν	7	11.20
Au	79	1.98

Table S1 The elemental content analysis of the hierarchical porous $Co_{2.5}$ - $C_{TA1}@g$ - C_3N_4 nanosheets calcinated at 700°C by EDX characterization.

Table S2 The BET results of hierarchical porous $Co_{2.5}$ - C_{TA1} @g- C_3N_4 -700°C nanosheets

Sample Specific surface area (cm ² g ⁻¹)		Pore volume (cm ³ g ⁻¹)	
$Co_{2.5}$ - $C_{TA1}@g$ - C_3N_4 -700°C	335.9	0.858	

Fig. S5. XRD patterns of the hierarchical porous $Co-C_{TA}@g-C_3N_4$ nanosheets prepared with different ratios of Co/TA calcinated at 700°C.

Fig. S6. LSV curves of $Co_{2.5}$ - C_{TA1} @g- C_3N_4 -700°C for ORR in 0.5 M H₂SO₄ and 0.1 M KOH solutions.

Samples	E _{Onset} E (V vs. RHE)	$\begin{array}{c} E_{1/2} \\ E (V \text{ vs.} \\ RHE) \end{array}$	Limiting current density J (mA cm ⁻²)
Co _{2.5} -C _{TA1} @g-C ₃ N ₄ -700°C (0.1 M KOH)	0.990	0.864	-6.3
Co _{2.5} -C _{TA1} @g-C ₃ N ₄ -700°C (0.5 M H ₂ SO ₄)	0.912	0.735	-4.2
20% Pt/C (0.1 M KOH)	0.994	0.878	-5.1

Table S3 Comparison of electrochemical properties of Pt/C, $Co_{2.5}$ - $C_{TA1}@g$ - C_3N_4 -700°C nanosheets in alkaline and acidic electrolytes.

Samples	E _{Onset} E (V vs. RHE)	$\begin{array}{c} E_{1/2} \\ E \ (V \ vs. \\ RHE \end{array} \right)$	Limiting current density J (mA cm ⁻²)
Co@g-C ₃ N ₄ -700°C	0.826	0.598	-2.2
C_{TA} @g- C_3N_4 -700°C	0.724	0.613	-3.5
Co_1 - C_{TA1} @g- C_3N_4 -700°C	0.875	0.715	-2.7
$Co_{2.5}$ - C_{TA1} @g- C_3N_4 -700°C	0.990	0.864	-6.3
Co_5-C_{TA1} @g- C_3N_4 -700°C	0.989	0.861	-5.7
$Co_{7.5}$ - C_{TA1} @g- C_3N_4 -700°C	0.980	0.871	-4.1
Co_{10} - C_{TA1} @g- C_3N_4 -700°C	0.975	0.865	-4.2
20% Pt/C	0.994	0.878	-5.1

Table S4 Electrochemical performance comparison of the hierarchical porous Co- $C_{TA}@g-C_3N_4$ nanosheet prepared with different ratios of Co/TA calcinated at 700°C.