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Scheme S1 The scheme of the fabrication procedures for NiW/CP.

Notes: The NiW/CP electrode was fabricated by a simple two-step electro-deposition. The first step was 

for the deposition of Ni base on the CP substrate (Ni-CP), and then the second was for the co-deposition 

of NiW layer on the Ni-CP substrate. This could be inferred from the ICP-MS results in Table S1 and S2. 

About 18.6 μg/mL Ni was dissolved after the Ni/CP was immersed in the second-step electrolyte for 5 

mins, while much fewer Ni (2.1 μg/mL) was found in the electrolyte after 5-min catholic deposition with 

W source. Moreover, the Ni in the samples from the electrolytes after the second electro-deposition 

without W source for Ni-2/CP (15.8 μg/mL) was close to that after immersed, indicating that the Ni along 

cannot be deposited under the condition of second deposition without W. The amount of Ni (28.5 mg/mg) 

and W (1.8 mg/mg) on the NiW/CP was close to Ni (29.5 mg/mg) on Ni/CP and W (1.9 mg/mg) on the 

W/CP, respectively, confirming the co-deposition of NiW layer in the second deposition step.

Fig. S1 SEM images of CP.



Fig. S2 EDS-mapping images of CP.

Fig. S3 Element compositions of CP from SEM-EDS analysis. The only detected elements were C and O on 
the surface of CP.

Fig. S4 EDS-mapping images of NiW/CP.



Fig. S5 Element compositions of the NiW/CP from SEM-EDS analysis. The atomic ratio of Ni/W is 10.5.

Fig. S6 Raman spectrum of Ni/CP.

Fig. S7 XRD spectra of NiW/CP, Ni/CP, W/CP and CP.



Fig. S8 CV plots of different cycles for W/CP, Ni/CP and NiW/CP in 1 M KOH.

10 20 30 40 50 60 70 80

In
te

ns
ity

 (a
.u

.)

2 (degree)

Ni/CP-CV

NiW/CP-CV

W/CP-CV

Fig. S9 XRD spectra of NiW/CP, Ni/CP and W/CP after CV stabilization.

Fig. S10 SEM images of Ni/CP after CV scan, with almost unchanged morphology by comparison to the as-
prepared Ni/CP.



Fig. S11 SEM images of W/CP after CV scan. The W layer was basically lost, with the morphology of CP 
substrate visible.

Fig. S12 The ATR-FTIR spectra of Ni/CP and NiW/CP after CV stabilization.

Fig. S13 TEM images from different area of NiW/CP after CV stabilization



Fig. S14 a) The LSVs of NiW/CP in 1 M KOH solution with different concentrations of HMF; b) the variation 
of the summit current density before 1.5 V with the concentration of HMF.

Fig. S15 LSVs on NiW/NF in 1 M KOH solution with and without 10 mM HMF.

Fig. S16 HPLC chromatogram over charges on NiW/CP in 1 M KOH with 5 mM HMF.



Fig. S17 Reaction route for HMF to FDCA.

Fig. S18 Current-time curves in 5 successive runs on NiW/CP in separated 30 mL 1 M KOH with 5 mM HMF.

Fig. S19 a) The long-time stability test for NiW/CP, Ni/CP and W/CP in 1 M KOH at a current density of 100 
mA cm-2; b) the LSVs of NiW/CP in separated solutions of 1 M KOH before and after 10 h stability test.



Fig. S20 a) The current-time curve and b) the conversion of HMF or yield of FDCA and HMFCA on Ni/CP in 
30 mL 1 M KOH with 5 mM HMF. It took over 2.7 h to pass 86.68 C charge on Ni/CP, with only 81% HMF 
conversion and 78% FDCA yield.

Fig. S21 a) LSVs on Ni-2/CP in 1 M KOH solution with 10 mM HMF; b) the enlarged plot of a) from 1.0 V 
to 1.55 V.

Notes: The Ni-2/CP electrode was fabricated by the two electro-deposition steps but without W source. 

As discussed before, the Ni base after the first deposition was dissolved by the acidic solution in the 

second electrodeposition, and could be co-deposited back with the W source. While without the W 

source, the dissolved Ni ion could not be re-deposited, as indicated by the ICP results in Table S1 that the 

Ni in the solution after the second deposition of Ni-2/CP was far more than that of NiW/CP. The dramatic 

wastage of Ni on the Ni-2/CP was further supported by the much lower oxidation peak from the LSV in 1 

M KOH solution in Fig. S17 b), and was ascribed to its much poorer activity.
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Fig. S22 LSVs on NiW/CP in 1 M KOH solution with 10 mM HMF with or without W (17 ug/mL) dissolved.

Fig. S23 The CV between 0.91 and 1.01 V (vs RHE) at different scan rate from 20 to 200 mV·s-1 for a) 
NiW/CP, b) Ni/CP and c) W/CP 

Fig. S24 a, b) SEM images of NiW/CP after CV (before HMFOR).



Fig. S25 SEM images of Ni/CP a, b) after CV (before HMFOR) and c, d) after HMFOR.

Fig. S26 XPS spectra of Ni 2p3/2 before and after HMFOR for a) NiW/CP and b) Ni/CP.



Fig. S27 Top view of a) the pristine Ni(OH)2, and the Ni1-x(OH)2 with b) one Ni vacancy (x=0.0625), c) two 
Ni vacancies (x=0.125), d) three Ni vacancies (x=0.1875). The Ni, O, H atoms were represented with dark 
pink, grey and light pink balls, respectively. 

Scheme S2 The promotion of W exsolution from the NiW layer on the formation of high-valance Ni sites 
with superior activity towards HMFOR.



Table S1 The concentrations of Ni or W collected from diffirenet electrolytes by ICP-MS. Specifically, 

NiW/CP-de or Ni-2/CP-de represented the samples from the electrolytes after the second electro-

deposition with or without W source for NiW/CP or Ni-2/CP, respectively. Ni/CP-im represented the 

sample from the electrolytes of second electro-deposition with Ni/CP immersed for 5 min. The NiW/CP, 

Ni/CP and W/CP under columns of CV-x (x=1, 2, 10 and 60) represented the samples from the 1 M KOH 

electrolyte after x cycyles of CV on the NiW/CP, Ni/CP and W/CP, respectively.

Ni (μg/mL) W (μg/mL)

NiW/CP-de 2.13 ± 0.05 4.53 ± 0.01

Ni/CP-im 18.57 ± 0.04 4.57 ± 0.03

Ni-2/CP-de 15.76 ± 0.05 -

CV-1 CV-2 CV-10 CV-60 CV-1 CV-2 CV-10 CV-60

NiW/CP 0.03
± 0.01

0.07
± 0.01

0.17
± 0.02

0.37
± 0.03

10.71 
± 0.05

14.53 
± 0.06

16.74 
± 0.05

17.18 
± 0.04

Ni/CP 0.05
± 0.01

0.08
± 0.01

0.25
± 0.03

0.53
± 0.03 - - -

W/CP - - - - 15.63 
± 0.06

17.72 
± 0.03

18.91 
± 0.05

19.07 
± 0.04

Table S2 The weight percentage of Ni or W collected in one piece of modified CP for NiW/CP, Ni/CP and 

W/CP by ICP-MS. The columns of fresh, CV-60 and HMFOR-5 cycles represented the samples as-prepared, 

after 60 cycles of CV and after 5 successive runs of HMFOR, respectively. Each data was repeated for 3 

times with 3 different pieces of modified CP.

Ni (wt. %) W (wt. %)

fresh CV-60 HMFOR-5 cycles fresh CV-60 HMFOR-5 cycles

NiW/CP 28.51
± 0.03

28.43
± 0.05

28.12
± 0.02

1.82
± 0.05

under 
detection under detection

Ni/CP 29.47
± 0.05

28.79
± 0.05

28.85
± 0.06 - - -

W/CP - - 1.94
± 0.05

under 
detection under detection



Table S3 The comparisons of electro-chemical performance among this work and reported electrode. All the performance were tested in 1 M 

KOH at 25 oC, with 10 mM HMF for LSV, unless otherwise noted.

Chronoamperometry performance

Catalyst
Electrode 
substrate

LSV performance
potentail (VRHE) / current 

density (mA cm-2)
Total 

charge (C)
Reaction 

potential (VRHE)
Reaction time 

(min)
FE 
(%)

FDCA 
yield (%)

Cycl
e

CP
1.27 / onset

1.36 / 10
1.38 / 80

86.68 1.38 96 95.5 95.6 5This work
NiW

NF 1.38 / 150 -

Ni nanosheet1 CP
1.33 / onseta

1.4 / 10a 43.3 1.36 60 ~95 99.4 3

NiXB2 NF
1.40 / onset
1.45 / 100

58.2 1.45 30 ~100 98.5 -

NiSe@NiOx
3 NF

1.35 / onset
1.36 / 240

58 1.423 - 99 ~100 6

Ni3N@C4 NF 1.38 / 50 174 1.45 - 99.0 98 6

S-Ni@C5 Carbon Cloth
1.35 / onset

1.47 / 40
86.84 1.473 270 96 96 5

NiCoBDC6,b NF 1.54 / 10 - 1.55 240 78.8 99 4

NiFe LDH7 CP 
1.25 / onset

1.32 / 20 
57.79 1.33 90 98.6 98 4

NiCoFe LDH8,c,d CP 1.51 / 20 - 1.52 60 - 81.6 -

CoO-CoSe2
9 NF

1.3 / onset
1.4 / 50a 86.68 1.43 57 97.9 99 5

CoNW10 NF
1.311 / 10

1.764 / 100
289.5 1.469 - 96.6 98 5

NiCoMn 
LDH11,c,e NF

1.42 / onset
1.58 / 50

20.3 1.5 150 65 91.7 4



CuxS@NiCo LDH Cu foam
1.3 / 87

1.35 / 180.6
57.6 1.32 ~75 99 99 5

t-NiCo-MOF12,f NF 1.4 / 600~730 57.8 - ~66 98 ~100 5
a The data were evaluated from the corresponding LSV curves.

b Basic solution was 0.1 M KOH.

c Basic solution was 1 M NaOH.

d The chronoamperometry test was conducted at 65 oC.

e The chronoamperometry test was conducted at 35 oC.

f The HMF concentration was 50 mM for LSV test.



Table S4 Detailed deconvolution data of the Ni 2p3/2 for Ni/CP and NiW/CP before and after HMFOR from 

XPS.

Binding energy (eV) Atomic content (%)

Ni/CP NiW/CP Ni/CP-HMFOR NiW/CP-HMFOR

Ni0 852.9 ± 0.1 4.9 2.2 5.6 0

Ni2+ 855.3 ± 0.1 59.4 61.3 63.5 39.6

Ni3+ 856.6 ± 0.1 35.7 36.5 30.9 60.4

Table S5 The total energy (Etot) of NiOOH, H2O, H2, and Ni1-x(OH)2 (x=0, 0.0625, 0.1250, 0.1875) and the 

formation energy (Ef) from Ni1-x(OH)2 to NiOOH from the DFT calculations.

Item Etot (eV) Etot (eV)/unit Ef (eV)

NiOOH -343.381 -21.4613

H2O -14.225

H2 -6.758

Ni1-x(OH)2, x=0.0000 -423.424 -26.4640 2.45

Ni1-x(OH)2, x =0.0625 -415.737 -25.9836 1.05

Ni1-x(OH)2, x =0.1250 -408.529 -25.5331 -0.31

Ni1-x(OH)2, x =0.1875 -401.426 -25.0891 -1.67
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