Supporting Information

W Exsolution Promotes the In-situ Reconstruction of NiW Electrode with Rich Active Sites for Electrocatalytic Oxidation of 5-hydroxymethylfurfural

Gang Xu^{a,b}, Chenyu Chen^{a,b,c}, Mengxia Li^{a,b,c}, Xinyi Ren^d, Lianggao Hu^c, Chengrong Wu^c, Yu Zhuang^c, Fanan Wang^{*c}

^a Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of

Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China

^b Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

^c Fujian Eco-materials Engineering Research Center, School of Ecological Environment and Urban

Construction, Fujian University of Technology, Fuzhou 350118, China

^d Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

* Corresponding author: fanan_wang@fjut.edu.cn (F.N. Wang)

Scheme S1 The scheme of the fabrication procedures for NiW/CP.

Notes: The NiW/CP electrode was fabricated by a simple two-step electro-deposition. The first step was for the deposition of Ni base on the CP substrate (Ni-CP), and then the second was for the co-deposition of NiW layer on the Ni-CP substrate. This could be inferred from the ICP-MS results in **Table S1 and S2**. About 18.6 μ g/mL Ni was dissolved after the Ni/CP was immersed in the second-step electrolyte for 5 mins, while much fewer Ni (2.1 μ g/mL) was found in the electrolyte after 5-min catholic deposition with W source. Moreover, the Ni in the samples from the electrolytes after the second electro-deposition without W source for Ni-2/CP (15.8 μ g/mL) was close to that after immersed, indicating that the Ni along cannot be deposited under the condition of second deposition without W. The amount of Ni (28.5 mg/mg) and W (1.8 mg/mg) on the NiW/CP was close to Ni (29.5 mg/mg) on Ni/CP and W (1.9 mg/mg) on the W/CP, respectively, confirming the co-deposition of NiW layer in the second deposition step.

Fig. S1 SEM images of CP.

Fig. S2 EDS-mapping images of CP.

Fig. S3 Element compositions of CP from SEM-EDS analysis. The only detected elements were C and O on the surface of CP.

Fig. S4 EDS-mapping images of NiW/CP.

Fig. S5 Element compositions of the NiW/CP from SEM-EDS analysis. The atomic ratio of Ni/W is 10.5.

Fig. S6 Raman spectrum of Ni/CP.

Fig. S7 XRD spectra of NiW/CP, Ni/CP, W/CP and CP.

Fig. S8 CV plots of different cycles for W/CP, Ni/CP and NiW/CP in 1 M KOH.

Fig. S9 XRD spectra of NiW/CP, Ni/CP and W/CP after CV stabilization.

Fig. S10 SEM images of Ni/CP after CV scan, with almost unchanged morphology by comparison to the asprepared Ni/CP.

Fig. S11 SEM images of W/CP after CV scan. The W layer was basically lost, with the morphology of CP substrate visible.

Fig. S12 The ATR-FTIR spectra of Ni/CP and NiW/CP after CV stabilization.

Fig. S13 TEM images from different area of NiW/CP after CV stabilization

Fig. S14 a) The LSVs of NiW/CP in 1 M KOH solution with different concentrations of HMF; b) the variation of the summit current density before 1.5 V with the concentration of HMF.

Fig. S15 LSVs on NiW/NF in 1 M KOH solution with and without 10 mM HMF.

Fig. S16 HPLC chromatogram over charges on NiW/CP in 1 M KOH with 5 mM HMF.

Fig. S17 Reaction route for HMF to FDCA.

Fig. S18 Current-time curves in 5 successive runs on NiW/CP in separated 30 mL 1 M KOH with 5 mM HMF.

Fig. S19 a) The long-time stability test for NiW/CP, Ni/CP and W/CP in 1 M KOH at a current density of 100 mA cm⁻²; b) the LSVs of NiW/CP in separated solutions of 1 M KOH before and after 10 h stability test.

Fig. S20 a) The current-time curve and b) the conversion of HMF or yield of FDCA and HMFCA on Ni/CP in 30 mL 1 M KOH with 5 mM HMF. It took over 2.7 h to pass 86.68 C charge on Ni/CP, with only 81% HMF conversion and 78% FDCA yield.

Fig. S21 a) LSVs on Ni-2/CP in 1 M KOH solution with 10 mM HMF; b) the enlarged plot of a) from 1.0 V to 1.55 V.

Notes: The Ni-2/CP electrode was fabricated by the two electro-deposition steps but without W source. As discussed before, the Ni base after the first deposition was dissolved by the acidic solution in the second electrodeposition, and could be co-deposited back with the W source. While without the W source, the dissolved Ni ion could not be re-deposited, as indicated by the ICP results in Table S1 that the Ni in the solution after the second deposition of Ni-2/CP was far more than that of NiW/CP. The dramatic wastage of Ni on the Ni-2/CP was further supported by the much lower oxidation peak from the LSV in 1 M KOH solution in Fig. S17 b), and was ascribed to its much poorer activity.

Fig. S22 LSVs on NiW/CP in 1 M KOH solution with 10 mM HMF with or without W (17 ug/mL) dissolved.

Fig. S23 The CV between 0.91 and 1.01 V (vs RHE) at different scan rate from 20 to 200 mV·s⁻¹ for a) NiW/CP, b) Ni/CP and c) W/CP

Fig. S24 a, b) SEM images of NiW/CP after CV (before HMFOR).

Fig. S25 SEM images of Ni/CP a, b) after CV (before HMFOR) and c, d) after HMFOR.

Fig. S26 XPS spectra of Ni 2p3/2 before and after HMFOR for a) NiW/CP and b) Ni/CP.

Fig. S27 Top view of a) the pristine Ni(OH)₂, and the Ni_{1-x}(OH)₂ with b) one Ni vacancy (x=0.0625), c) two Ni vacancies (x=0.125), d) three Ni vacancies (x=0.1875). The Ni, O, H atoms were represented with dark pink, grey and light pink balls, respectively.

Scheme S2 The promotion of W exsolution from the NiW layer on the formation of high-valance Ni sites with superior activity towards HMFOR.

Table S1 The concentrations of Ni or W collected from diffirenet electrolytes by ICP-MS. Specifically, NiW/CP-de or Ni-2/CP-de represented the samples from the electrolytes after the second electro-deposition with or without W source for NiW/CP or Ni-2/CP, respectively. Ni/CP-im represented the sample from the electrolytes of second electro-deposition with Ni/CP immersed for 5 min. The NiW/CP, Ni/CP and W/CP under columns of CV-x (x=1, 2, 10 and 60) represented the samples from the 1 M KOH electrolyte after x cycyles of CV on the NiW/CP, Ni/CP and W/CP, respectively.

	Ni (µg/mL)			W (μg/mL)				
NiW/CP-de	2.13 ± 0.05				4.53 ± 0.01			
Ni/CP-im	18.57 ± 0.04			4.57 ± 0.03				
Ni-2/CP-de	15.76 ± 0.05 -							
	CV-1	CV-2	CV-10	CV-60	CV-1	CV-2	CV-10	CV-60
NiW/CP	0.03 ± 0.01	0.07 ± 0.01	0.17 ± 0.02	0.37 ± 0.03	10.71 ± 0.05	14.53 ± 0.06	16.74 ± 0.05	17.18 ± 0.04
Ni/CP	0.05 ± 0.01	0.08 ± 0.01	0.25 ± 0.03	0.53 ± 0.03	-	-		-
W/CP	-	-	-	-	15.63 17.72 18.91 ± 0.06 ± 0.03 ± 0.05			19.07 ± 0.04

Table S2 The weight percentage of Ni or W collected in one piece of modified CP for NiW/CP, Ni/CP and W/CP by ICP-MS. The columns of fresh, CV-60 and HMFOR-5 cycles represented the samples as-prepared, after 60 cycles of CV and after 5 successive runs of HMFOR, respectively. Each data was repeated for 3 times with 3 different pieces of modified CP.

	Ni (wt. %)			W (wt. %)			
	fresh	CV-60	HMFOR-5 cycles	fresh	CV-60	HMFOR-5 cycles	
NiW/CP	28.51 ± 0.03	28.43 ± 0.05	28.12 ± 0.02	1.82 ± 0.05	under detection	under detection	
Ni/CP	29.47 ± 0.05	28.79 ± 0.05	28.85 ± 0.06	-	-	-	
W/CP	-		-	1.94 ± 0.05	under detection	under detection	

Table S3 The comparisons of electro-chemical performance among this work and reported electrode. All the performance were tested in 1 MKOH at 25 °C, with 10 mM HMF for LSV, unless otherwise noted.

		ISV performance	Chronoamperometry performance						
Catalyst	Electrode substrate	potentail (V _{RHE}) / current density (mA cm ⁻²)	Total charge (C)	Reaction potential (V _{RHE})	Reaction time (min)	FE (%)	FDCA yield (%)	Cycl e	
This work NiW	СР	1.27 / onset 1.36 / 10 1.38 / 80	86.68	1.38	96	95.5	95.6	5	
	NF	1.38 / 150			-				
Ni nanosheet ¹	СР	1.33 / onsetª 1.4 / 10ª	43.3	1.36	60	~95	99.4	3	
Ni _x B²	NF	1.40 / onset 1.45 / 100	58.2	1.45	30	~100	98.5	-	
NiSe@NiO _x ³	NF	1.35 / onset 1.36 / 240	58	1.423	-	99	~100	6	
Ni₃N@C⁴	NF	1.38 / 50	174	1.45	-	99.0	98	6	
S-Ni@C⁵	Carbon Cloth	1.35 / onset 1.47 / 40	86.84	1.473	270	96	96	5	
NiCoBDC ^{6,b}	NF	1.54 / 10	-	1.55	240	78.8	99	4	
NiFe LDH ⁷	СР	1.25 / onset 1.32 / 20	57.79	1.33	90	98.6	98	4	
NiCoFe LDH ^{8,c,d}	СР	1.51 / 20	-	1.52	60	-	81.6	-	
CoO-CoSe ₂ 9	NF	1.3 / onset 1.4 / 50ª	86.68	1.43	57	97.9	99	5	
CoNW ¹⁰	NF	1.311 / 10 1.764 / 100	289.5	1.469	-	96.6	98	5	
NiCoMn LDH ^{11,c,e}	NF	1.42 / onset 1.58 / 50	20.3	1.5	150	65	91.7	4	

Cu _x S@NiCo LDH	Cu foam	1.3 / 87 1.35 / 180.6	57.6	1.32	~75	99	99	5
t-NiCo-MOF ^{12,f}	NF	1.4 / 600~730	57.8	-	~66	98	~100	5

^a The data were evaluated from the corresponding LSV curves.

^b Basic solution was 0.1 M KOH.

^c Basic solution was 1 M NaOH.

^d The chronoamperometry test was conducted at 65 °C.

^e The chronoamperometry test was conducted at 35 °C.

^f The HMF concentration was 50 mM for LSV test.

Table S4 Detailed deconvolution data of the Ni 2p3/2 for Ni/CP and NiW/CP before and after HMFOR fromXPS.

	Binding energy (eV)	Atomic content (%)				
		Ni/CP	NiW/CP	Ni/CP-HMFOR	NiW/CP-HMFOR	
Ni ⁰	852.9 ± 0.1	4.9	2.2	5.6	0	
Ni ²⁺	855.3 ± 0.1	59.4	61.3	63.5	39.6	
Ni ³⁺	856.6 ± 0.1	35.7	36.5	30.9	60.4	

Table S5 The total energy (E_{tot}) of NiOOH, H₂O, H₂, and Ni_{1-x}(OH)₂ (x=0, 0.0625, 0.1250, 0.1875) and the formation energy (E_f) from Ni_{1-x}(OH)₂ to NiOOH from the DFT calculations.

ltem	E _{tot} (eV)	E _{tot} (eV)/unit	E _f (eV)
NiOOH	-343.381	-21.4613	
H ₂ O	-14.225		
H ₂	-6.758		
Ni _{1-x} (OH) ₂ , x=0.0000	-423.424	-26.4640	2.45
Ni _{1-x} (OH) ₂ , x =0.0625	-415.737	-25.9836	1.05
Ni _{1-x} (OH) ₂ , x =0.1250	-408.529	-25.5331	-0.31
Ni _{1-x} (OH) ₂ , x =0.1875	-401.426	-25.0891	-1.67

Reference

- X. Lu, K. H. Wu, B. Zhang, J. Chen, F. Li, B. J. Su, P. Yan, J. M. Chen and W. Qi, *Angew. Chem. Int. Ed. Engl.*, 2021, 60, 14528-14535.
- 2. S. Barwe, J. Weidner, S. Cychy, D. M. Morales, S. Dieckhofer, D. Hiltrop, J. Masa, M. Muhler and W. Schuhmann, *Angew. Chem. Int. Ed. Engl.*, 2018, **57**, 11460-11464.
- 3. L. Gao, Z. Liu, J. Ma, L. Zhong, Z. Song, J. Xu, S. Gan, D. Han and L. Niu, *Appl. Catal. B-Environ.l*, 2020, **261**.
- 4. N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou, Z. Liu, B. Zhou, G. Huang, H. Lin and S. Wang, *Angew. Chem. Int. Ed. Engl.*, 2019, **58**, 15895-15903.
- 5. F. Kong and M. Wang, ACS Appl. Energ. Mater., 2021, 4, 1182-1188.
- 6. M. Cai, Y. Zhang, Y. Zhao, Q. Liu, Y. Li and G. Li, *J. Mater. Chem. A*, 2020, **8**, 20386-20392.
- 7. W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin and G. W. Huber, *ACS Catal.*, 2018, **8**, 5533-5541.
- 8. M. Zhang, Y. Liu, B. Liu, Z. Chen, H. Xu and K. Yan, ACS Catal., 2020, **10**, 5179-5189.
- 9. X. Huang, J. L. Song, M. L. Hua, Z. B. Xie, S. S. Liu, T. B. Wu, G. Y. Yang and B. X. Han, *Green Chem.*, 2020, **22**, 843-849.
- 10. Z. Zhou, C. Chen, M. Gao, B. Xia and J. Zhang, *Green Chem.*, 2019, **21**, 6699-6706.
- 11. B. Liu, S. Xu, M. Zhang, X. Li, D. Decarolis, Y. Liu, Y. Wang, E. K. Gibson, C. R. A. Catlow and K. Yan, *Green Chem.*, 2021, **23**, 4034-4043.
- 12. X. Deng, M. Li, Y. Fan, L. Wang, X.-Z. Fu and J.-L. Luo, *Appl. Catal. B-Environ.*, 2020, **278**, 119339-119353.