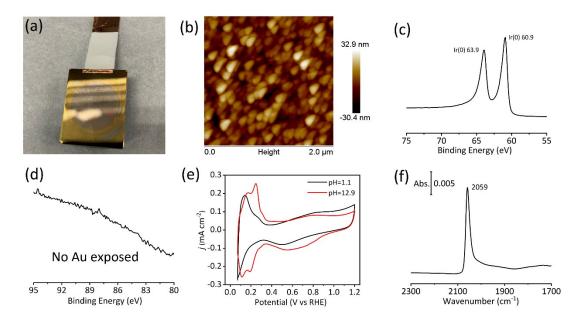
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022


Electrolyte pH-Dependent Hydrogen Binding Energies and Coverages on Platinum, Iridium, Rhodium, and Ruthenium Surfaces

Shangqian Zhu¹ and Minhua Shao^{1,2,*}

¹Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

²Energy Institute, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

*Corresponding Author: kemshao@ust.hk

Figure S1. a) A photo, b) AFM characterization, c) Ir 4f and d) Au 4f XPS spectra, e) CVs, and f) CO adsorption spectrum collected at 0.1 V in a 0.1 M HClO₄ solution of the Ir thin film.

Table S1. H_{atop} coverage ratio (alkaline/acidic media)

	Ir	Rh	Ru	Pta
H _{atop} coverage ratio	224%	1386%	1800%	193%

^a Data obtained from reference.²⁵ For Ir and Pt, the ratios were compared at 0 V vs RHE. Spectra at -0.1 V vs RHE were used for comparison on Rh and Ru.